Engineering Mechanics

- Introduction and basic concepts.
- Force system, units system, parallelogram law, force components,
- Resultant of coplanar forces, components of force in space,
- Moment of a force, moment of coupler, equilibrium, free body diagram, coplanar system,
- Analysis of trusses,
- Friction, nature of friction, theory of friction, coefficient of friction,
- Centroids and center of gravity, centroids of area, centroids determined by integration,
- Moments of inertia, parallel axes theorem, $2^{\text {nd }}$ moment of area by integration, radius of gyration, moment of inertia of composite area.
- These lectures were prepared and used by me to conduct lectures for $1^{\text {st }}$ year B. Tech. students as part of Engineering Mechanics course.
- Theories, Figures, Problems, Concepts used in the lectures to fulfill the course requirements are taken from the following references
- I take responsibility for any mistakes in solving the problems. Readers are requested to rectify when using the same.
- I thank the following authors for making their books \& lectures available for reference
A. Ali

References:-

- Vector Mechanics for Engineers - Statics \& Dynamics, Beer \& Johnston; 10 edition.
- Engineering Mechanics Statics Vol. 1, Engineering Mechanics Dynamics Vol. 2, Meriam\& Kraige; $6^{\text {th }}$ edition.
- Engineering Mechanics Statics, Engineering Mechanics Dynamics , R. C Hibbeler; 12 edition.
- Engineering Mechanics - Statics, lectures by instructor, R. Ganesh Narayanan.
- Engineering Mechanics - Dynamics, lectures by instructor, Y. Wang.
- Lectures of other instructors in the department.
- Any other references in this field.

Engineering Mechanics

Engineering Mechanics: may be defined as a science which describes and predicts the condition of rest or motion of bodies under the action of forces.

The mechanics of rigid bodies is subdivided into statics and dynamics, the former dealing with bodies at rest, the latter with bodies in motion.

I-Statics:-

Statics is the branch of mechanics which deals with bodies (solids) at rest under the influence of forces.

We consider RIGID BODIES - Non deformable

Vector \& Scalar quantities:

Scalar quantities: are the quantities which have only magnitude. Such as:
Time, size, sound , density, light, volume...
Vector quantities: are the quantities which have magnitude and direction.
Such as: Force, distance, velocity, displacement, acceleration,....

```
\(\mathrm{V}=\mathrm{Iv} \mid \mathrm{n}\), where \(\mathrm{IvI}=\) magnitude, \(\underline{\mathrm{n}=\text { unit vector }}\)
\(\mathrm{n}=\mathrm{V} / \mathrm{lv} \mathrm{l}\)
n - dimensionless and in direction of vector ' V '
```

In our course:

i, j, k - unit vectors

Dot product of vectors: $\mathrm{A} . \mathrm{B}=\mathrm{AB} \cos \theta ; \mathrm{A} \cdot \mathrm{B}=\mathrm{B} \cdot \mathrm{A}$ (commutative)

$A \cdot(B+C)=A \cdot B+A \cdot C$ (distributive operation)

$$
i . i=1
$$

$$
A \cdot B=\left(A_{x} i+A_{y} j+A_{z} k\right) \cdot\left(B_{x} i+B_{y} j+B_{z} k\right)=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \quad i \cdot j=0
$$

Cross product of vectors: $\mathrm{A} \times \mathrm{B}=\mathrm{C} ;|\mathrm{CI}=|\mathrm{A}| \mathrm{IB}| \operatorname{Sin} \theta ; \mathrm{AxB}=-(\mathrm{B} \times \mathrm{A})$ $C \times(A+B)=C \times A+C \times B$

$k \quad 1$

| $k \times j=-i ;$ |
| :--- | :--- | :--- | :--- |
| $i \times i=0$ |\(\left|\begin{array}{lll}i \& j \& k

A_{x} \& A_{\gamma} \& A_{z}

B_{x} \& B_{\gamma} \& B_{z}\end{array}\right|\)

$$
A x B=\left(A_{x} i+A_{y} j+A_{z} k\right) x\left(B_{x} i+B_{y} j+B_{z} k\right)=\left(A_{y} B_{z}-A_{z} B_{y}\right) i+() j+() k
$$

ADDITION OF VECTORS:

$$
\mathbf{P}+\mathbf{Q}=\mathbf{Q}+\mathbf{P}
$$

Hint:

$i \times i=0$	$j \times i=-k$	$k \times i=j$
$i \times j=k$	$j \times j=0$	$k \times j=-i$
$i \times k=-j$	$j \times k=i$	$k \times k=0$

Forces:

Since mechanics is primarily a study of the effects of forces, it is important to have a clear understanding of the concept of a force:

A force

- Action of one body on another which changes or tends to change the motion of the body.
- Required force can move a body in the direction of action,otherwise no effect.

Force system:

Magnitude, direction and point of application is important

External effect: Forces applied (applied force); Forces exerted by bracket, bolts, foundation..... (reactive force)

Internal effect: Deformation, strain pattern - permanent strain; depends on material properties of bracket, bolts...

Transmissibility principle:
A force may be applied at any point on a line of action without changing the resultant effects of the force applied external to rigid body on which it acts

Magnitude, direction and line of action is important; not point of application

Method of Problem Solution

1- Graphical Method:-

A) A parallelogram
B) The triangle rule
((Magnitudes of Forces can be measured directly))

2- Mathematical Method (Algebraic method)

A) Trigonometric Solution.
B) Alternative Trigonometric Solution

Example: The two forces P and Q act on a bolt A . Determine the resultant.

SOLUTION

Graphical Solution. A parallelogram with sides equal to \mathbf{P} and \mathbf{Q} is drawn to scale. The magnitude and direction of the resultant are measured and found to be

$$
R=98 \mathrm{~N} \quad \mathrm{a}=35^{\circ} \quad \mathrm{R}=98 \mathrm{Na} 35^{\circ}
$$

The triangle rule may also be used. Forces \mathbf{P} and \mathbf{Q} are drawn in tip-totail fashion. Again the magnitude and direction of the resultant are measured.

$$
R=98 \mathrm{~N} \quad \mathrm{a}=35^{\circ} \quad \mathrm{R}=98 \mathrm{Na} 35^{\circ}
$$

$$
\begin{aligned}
\mathrm{P} & =40 \mathrm{~N} \text { with } 20^{\circ} \\
\mathrm{Q} & =60 \mathrm{~N} \text { with } 45^{\circ}
\end{aligned}
$$

Trigonometric Solution. The triangle rule is again used; two sides and the included angle are known. We apply the law of cosines.

$$
\begin{aligned}
& R^{2}=P^{2}+Q^{2}-2 P Q \cos B \\
& R^{2}=(40 \mathrm{~N})^{2}+(60 \mathrm{~N})^{2}-2(40 \mathrm{~N})(60 \mathrm{~N}) \cos 155^{\circ} \\
& R=97.73 \mathrm{~N}
\end{aligned}
$$

Now, applying the law of sines, we write

$$
\frac{\sin A}{Q}=\frac{\sin B}{R} \quad \frac{\sin A}{60 \mathrm{~N}}=\frac{\sin 155^{\circ}}{97.73 \mathrm{~N}}
$$

Solving Eq. (1) for $\sin A$, we have

$$
\sin A=\frac{(60 \mathrm{~N}) \sin 155^{\circ}}{97.73 \mathrm{~N}}
$$

Using a calculator, we first compute the quotient, then its are sine, and obtain

$$
A=15.04^{\circ} \quad a=20^{\circ}+A=35.04^{\circ}
$$

We use 3 significant figures to record the answer (cf. Sec. 1.6):

$$
\mathbf{R}=9.5 \mathrm{~N} \text { a } 350^{\circ}
$$

Alternative Trigonometric Solution. We construct the right triangle $B C D$ and compute

$$
\begin{aligned}
& C D=(60 \mathrm{~N}) \sin 25^{\circ}=25.36 \mathrm{~N} \\
& B D=(60 \mathrm{~N}) \cos 25^{\circ}=54.38 \mathrm{~N}
\end{aligned}
$$

Then, using triangle $A C D$, we obtain

$$
\begin{aligned}
\tan A & =\frac{25.36 \mathrm{~N}}{94.38 \mathrm{~N}} & A=15.04^{\circ} \\
R & =\frac{25.36}{\sin A} & R=97.73 \mathrm{~N}
\end{aligned}
$$

Again,

$$
\mathrm{a}=20^{\circ}+\mathrm{A}=35.04^{\circ} \quad \mathrm{B}=9-.5 \text { N a } 35.0^{\circ}
$$

Ex. (H.W):
A barge is pulled by two tugboats. If the resultant of the forces exerted by the tugboats is a $5000-\mathrm{lb}$ force directed along the axis of the barge, determine (a) the tension in each of the ropes knowing that $\mathrm{a}=45^{\circ}$, (b) the value of a for which the tension in rope 2 is minimum.

ANS:
a) 3700 Ib, b) 60°

Review:-

A) Two Forces perpendicular each other

$$
R=\sqrt{F_{1}^{2}+F_{2}^{2}}
$$

$$
\tan \theta=\frac{F_{2}}{F_{1}} \quad \longrightarrow \quad \theta=\tan ^{-1}\left(\mathrm{~F}_{2} / \mathrm{F}_{1}\right) \mathbf{j}
$$

$F x=f x \mathbf{i} ; F y=f y \mathbf{j} ; \mathbf{f x}$, fy are scalar quantities

Fy

Fx
B) The direction of each forces is know

$$
\alpha=180-\theta
$$

To find the Resultant force use the cosine Rule:-

$$
R=\sqrt{F_{1}^{2}+F_{2}^{2}-2 F_{1} F_{2} * \cos (\alpha)}
$$

To find the direction of R use sine Rule

$$
\frac{R}{\sin (\alpha)}=\frac{F_{2}}{\sin (\beta)}
$$

$\operatorname{Sin}(\beta)=\frac{F_{2}}{R} \sin (\alpha)$

Resolve the force in to two components:
Let the force (F) shown in fig. (1) With the direction ($\boldsymbol{\theta}$)

$$
\begin{aligned}
& F_{x}=F \cos \theta \quad F=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
& F_{y}=F \sin \theta \quad \theta=\tan ^{-1} \frac{F_{y}}{F_{x}}
\end{aligned}
$$

EX:

$$
\alpha=50-30=20
$$

$$
\theta=180-20
$$

$$
\theta=160^{\circ}
$$

$$
R=\sqrt{50^{2}+100^{2}-2 * 50 * 100 * \cos }
$$

$$
\mathrm{R}=147.9 \mathrm{~N}
$$

$$
\frac{R}{\sin (\theta)}=\frac{F_{2}}{\sin (\alpha)}
$$

$$
\sin (\alpha)=\frac{100}{R} \sin (\theta) \longrightarrow \alpha=13.4^{\circ}
$$

See Resolution force Examples

Types of forces system

1- Coplanar forces system:
a- concurrent coplanar forces system
b- Non-concurrent coplanar forces system
2- Non coplanar forces system:
a- concurrent non-coplanar forces system
b- Non-concurrent non-coplanar forces system

Concurrent force:- Forces are said to be concurrent at a point if their lines of action intersect at that point

Resultant forces

A simplest force which can replace the original forces system without changing its external effect on a rigid body.

The symbol of resultant force is:

The unit of resultant force is : Newton (N)

Resultant of concurrent coplanar forces system

We will find out the resultant force for many forces acting on a rigid body by using the following equations:

$$
R=\sqrt{\left(R_{x}\right)^{2}+\left(R_{y}\right)^{2}}
$$

The direction of resultant force may be determined as :
$\theta=\tan ^{-1}\left(\frac{R y}{R x}\right)$

Ex:

Find the resultant force for the concurrent coplanar forces system, shown in figure.

Solution

$$
\begin{aligned}
& R_{x}=F_{1} \cdot \cos \theta_{1} \pm F_{2 \cdot} \cdot \cos \theta_{2} \pm F_{3} \cdot \cos \theta_{3} \\
& 200 * \frac{2}{\sqrt{5}}-100 * \cos 60+90 \cos 45=+192.4 N \\
& R y=200 * \frac{1}{\sqrt{5}}-100 * \sin 60-90^{*} \sin 45 \\
& =-60.8 \mathrm{~N} \\
& R=\sqrt{\left(R_{x}\right)^{2}+\left(R_{k}\right)^{2}} \\
& \quad \sqrt{(192.4)^{2}+(60.8)^{2}}=202 \mathrm{~N}
\end{aligned}
$$

Ex:

Four forces act on bolt A as shown.
Determine the resultant of the forces on the bolt.

SOLUTION

Force	Magnitude, N	x Component, N	y Compenent, N
F_{1}	150	+12919	+75.0.
F_{2}	80	-27.4.	+75:2
F_{3}	110	0:	-1110.0.
F_{4}	100	+\%6.6.	-25:9
		$R_{x}=\# 199.1$	$R_{4}=+14.3$

Thus, the resultant R of the four forces is

$-\left(F_{2} \sin 20^{\circ}\right) i$

$$
\mathbf{R}=R_{x} \mathbf{i}+R_{y} \mathbf{j} \quad \mathbf{R}=(199.1 \mathbf{N}) \mathbf{i}+(14.3 \mathbf{N} \mathbf{j}
$$

$\tan \mathrm{a}=\frac{R_{y}}{R_{x}}=\frac{14.3 \mathrm{~N}}{199.1 \mathrm{~N}} \quad \mathrm{a}=4.1^{\circ}$

$$
R=\frac{14.3 \mathrm{~N}}{\sin \mathbf{a}}=199.6 \mathrm{~N} \quad \mathrm{R}=199.6 \mathrm{~N} \mathrm{a} 4.1^{\circ}
$$

Ex :-

The $\mathbf{2 0 0} \mathbf{N}$ force is a resultant of two forces, one of the forces " \mathbf{P} " has the direction along the tine $\mathbf{A B}$ and the other force $" \mathbf{Q}$ " is on the horizontal direction, determine them.

Solution:

$$
\begin{aligned}
& R_{x}=F_{1} \cdot \cos \theta_{1} \mp F_{2} \cdot \cos \theta_{2} \\
& R * \cos \theta_{R}=F_{1} \cdot \cos \theta_{1} \mp F_{2 \cdot} \cos \theta_{2} \\
& 200 * \frac{4}{5}=P * \cos 60+Q \cos (0) \\
& 160=0.5 P+Q \\
& R_{y}=F_{1} \cdot \sin \theta_{1} \mp F_{2 \cdot} \cdot \sin \theta_{2} \\
& R * \sin \theta_{R}=F_{1 \cdot} \cdot \sin \theta_{1} \mp F_{2 \cdot} \cdot \sin \theta_{2} \\
& -200 * \frac{3}{5}=P * \sin 60-Q \sin (0) \\
& P=138.5 N \\
& \therefore Q=229.25 N
\end{aligned}
$$

HW 2: Solve problem 2.21-2.42 page 33 in ref. 1

HIN

Sine rule
 $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Cosine rule

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B
\end{aligned}
$$

RECTANGULAR COMPONENTS

OF A FORCE IN SPACEF

The problems considered in the first part be formulated and solved in a single plane. In this section and in this section, we will discuss problems involving the three dimensions of space.

Consider a force F acting at the origin O of the system of rectangular coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$. To define the direction of F , we draw the vertical plane OBAC containing F.

- Resolve F into horizontal and vertical components.

$$
\begin{aligned}
& F_{y}=F \cos \theta_{y} \\
& F_{h}=F \sin \theta_{y}
\end{aligned}
$$

- Resolve F_{h} into rectangular components

$$
\begin{aligned}
F_{x} & =F_{h} \cos \phi \\
& =F \sin \theta_{y} \cos \phi \\
F_{z} & =F_{h} \sin \phi \\
& =F \sin \theta_{y} \sin \phi
\end{aligned}
$$

Applying the Pythagorean theorem to the triangles OAB and OCD of Fig.
2.30, we write

$$
\begin{aligned}
& F^{2}=(O A)^{2}=(O B)^{2}+(B A)^{2}=F_{y}^{2}+F_{b}^{2} \\
& F_{h}^{2}=(O C)^{2}=(O D)^{2}+(D C)^{2}=F_{x}^{2}+F_{z}^{2}
\end{aligned}
$$

$$
\mathrm{F}=\left(F_{x}^{2}+F_{y}^{2}+F_{z}^{2}\right)^{1 / 2}
$$

SPATIAL COMPONENTS (DIRECTION COSINES)

- With the angles between \mathbf{F} and the axes,
$F_{x}=F \cos \theta_{x} \quad F_{y}=F \cos \theta_{y} \quad F_{z}=F \cos \theta_{z}$
$\vec{F}=F_{x} \vec{i}+F_{y} \vec{j}+F_{z} \vec{k}$
$=F\left(\cos \theta_{x} \vec{i}+\cos \theta_{y} \vec{j}+\cos \theta_{z} \vec{k}\right)$
$=F \vec{\lambda}$
$\vec{\lambda}=\cos \theta_{x} \vec{i}+\cos \theta_{y} \vec{j}+\cos \theta_{z} \vec{k}$
- $\vec{\lambda}$ is a unit vector along the line of action of $\mathbf{F} ; \cos \theta_{x}, \cos \theta_{y}$, and $\cos \theta_{z}$ are the direction cosines

Rectangular Components in Space

- Direction of force F

- Defined by location of two points
- $M\left(x_{1}, y_{1}\right.$ and $\left.z_{1}\right)$ and $N\left(x_{2}, y_{2}\right.$ and $\left.z_{2}\right)$

ADDITION OF CONCURRENT FORCES IN SPACE

$$
\mathbf{R}=\Sigma \mathbf{F}
$$

we resolve each force into its rectangular components and write

$$
\begin{aligned}
R_{x} \mathbf{i}+R_{y} \mathbf{j}+R_{z} \mathbf{k} & =\Sigma\left(F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{z} \mathbf{k}\right) \\
& =\left(\Sigma F_{x}\right) \mathbf{i}+\left(\Sigma F_{y}\right) \mathbf{j}+\left(\Sigma F_{z}\right) \mathbf{k}
\end{aligned}
$$

from which it follows that

$$
R_{x}=\Sigma F_{x} \quad R_{y}=\Sigma F_{y} \quad R_{z}=\Sigma F_{z}
$$

The magnitude of the resultant and the angles u_{x}, u_{y}, u_{z} that the resultant forms with the coordinate axes are

$$
\begin{gathered}
R=\prod \sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}} \\
\cos \mathrm{u}_{x}=\frac{R_{x}}{R} \quad \cos \mathrm{u}_{y}=\frac{R_{y}}{R} \quad \cos \mathrm{u}_{z}=\frac{R_{z}}{R}
\end{gathered}
$$

Example: The tension in the guy wire is 2500 N. Determine:
a) components F_{x}, F_{y}, F_{z} of the force acting on the bolt at A,
b) the angles q_{x}, q_{y}, q_{z} defining the direction of the force

SOLUTION:

- Based on the relative locations of the points A and B, determine the unit vector pointing from A towards B.
- Apply the unit vector to determine the components of the force acting on A.
- Noting that the components of the unit vector are the direction cosines for the vector, calculate the corresponding angles.

Solution

- Determine the unit vector pointing from A towards B.

$$
\begin{aligned}
\overrightarrow{A B} & =(-40 \mathrm{~m}) \vec{i}+(80 \mathrm{~m}) \vec{j}+(30 \mathrm{~m}) \vec{k} \\
A B & =\sqrt{(-40 \mathrm{~m})^{2}+(80 \mathrm{~m})^{2}+(30 \mathrm{~m})^{2}} \\
& =94.3 \mathrm{~m} \\
\vec{\lambda} & =\left(\frac{-40}{94.3}\right) \vec{i}+\left(\frac{80}{94.3}\right) \vec{j}+\left(\frac{30}{94.3}\right) \vec{k} \\
& =-0.424 \vec{i}+0.848 \vec{j}+0.318 \vec{k}
\end{aligned}
$$

- Determine the components of the force.

$$
\begin{aligned}
\vec{F} & =F \vec{\lambda} \\
& =(2500 \mathrm{~N})(-0.424 \vec{i}+0.848 \vec{j}+0.318 \vec{k}) \\
& =(-1060 \mathrm{~N}) \vec{i}+(2120 \mathrm{~N}) \vec{j}+(795 \mathrm{~N}) \vec{k}
\end{aligned}
$$

HW 2: See Ex. 2.8 and Solve problem 2.71-2.98 page 55 in ref. 1

Example: The line of action of force \mathbf{F} directs from point A to point B. If the magnitude of the force is 120 lb , express the force in Cartesian vector form.

Position vector:

$$
\begin{aligned}
\mathbf{r}_{A B} & =\mathbf{r}_{B}-\mathbf{r}_{A}=\{(7-0) \mathbf{i}+(-1.5-5) \mathbf{j}+(0-2) \mathbf{k}\} \mathrm{ft} \\
& =\{7 \mathbf{i}-6.5 \mathbf{j}-2 \mathbf{k}\} \mathrm{ft}
\end{aligned}
$$

Unit vector:

$\mathbf{u}_{A B}=\frac{\mathbf{r}_{A B}}{r_{A B}}=\frac{\{7 \mathbf{i}-6.5 \mathbf{j}-2 \mathbf{k}\} \mathrm{ft}}{\sqrt{7^{2}+(-6.5)^{2}+(-2)^{2}} \mathrm{ft}}$

$$
(7 \mathrm{ft},-1.5 \mathrm{ft}, 0)_{x}
$$

$$
=0.717 \mathrm{i}-0.666 \mathbf{j}-0.205 \mathbf{k}
$$

Force vector:

$$
\begin{aligned}
\mathbf{F} & =F \cdot \mathbf{u}_{A B}=120 \mathrm{lb} \cdot\{0.717 \mathrm{i}-0.666 \mathrm{j}-0.205 \mathrm{k}\} \\
& =\{86 . \mathrm{li}-79.9 \mathbf{j}-24.6 \mathrm{k}\} \mathrm{lb}
\end{aligned}
$$

Moment of a force

The moment of a force: The tendency of a force to rotate a rigid body about any defined axis (or point or line) is called the Moment of the Force.

Mathematically:
The moment of a force $=$ the applied force X perpendicular distance from the axis of rotation to the LOA of force

$$
\begin{aligned}
& \mathbf{M}=\mathbf{F} * \mathbf{d} \\
& \mathbf{M}=\text { the moment of a force (N.m)_or } \\
& \mathbf{F}=\text { applied force }(\mathbf{N})
\end{aligned}
$$

d $=$ perpendicular distance between the point of action of the force and moment centre.

Moment is perpendicular to plane about axis O-O.

Beams are often used to bridge gaps in walls. We have to know what the effect of the force on the beam will have on the beam supports.

What do you think those impacts are at points A and B ?

Properties of a Moment

- Moments not only have a magnitude, they also have a sense to them.
- The sense of a moment is clockwise or counterclockwise depending on which way it will tend to

(b) $\boldsymbol{M}_{O}=-F d$

(a) $M_{O}=+F d$ make the object rotate.
- The sense of a Moment is defined by the direction it is acting on the Axis and can be found using Right Hand Rule.

(a) Sense of rotation

Cross product:

$M=r \times F$; where ' r ' is the position vector which runs from
the moment reference point ' A ' to any point on the
LOA of ' F '
$M=F r \sin \alpha ; M=F d$

$M=r \times F=-(F \times r):$ sense is important
$\sin \alpha=d / r$

Varignon Theorem

The moment of a force about any point is equal to the sum of the moments of the components of the forces about the same point

Concurrent forces - P, Q

Usefulness:

Moment of 'Q'

Resultant ' R ' - moment arm 'd'
Force 'P' - moment arm ' p '; Force ' Q ' - moment arm ' q '

$$
M_{0}=R d=-p P+q Q
$$

OR
Application of varignons theorem that
MR= M1+M2+M3+-------------Mn

Or

$$
M R=\sum_{i=1}^{n} M i
$$

Example

- A $100-\mathrm{lb}$ vertical force is applied to the end of a lever which is attached to a shaft at O.
- Determine:
a) Moment about O,
b) Horizontal force at A which creates
the same moment,
c) Smallest force at A which produces the same moment,
d) Location for a $240-\mathrm{lb}$ vertical force
to produce the same moment,
e) Whether any of the forces from b, c, and d is equivalent to the original
 force.

Solution:

a) Moment about O is equal to the product of the force and the perpendicular distance between the line of action of the force and O. Since the force tends to rotate the lever clockwise, the moment vector is into the plane of the paper.

$$
\begin{aligned}
M_{O}= & F d \\
d= & (24 \mathrm{in}) \cos 60^{\circ}=12 \mathrm{in} . \\
M_{O}= & (100 \mathrm{lb})(12 \mathrm{in} .) \\
& M_{O}=1200 \mathrm{lb} \cdot \mathrm{in}
\end{aligned}
$$

b) Horizontal force at A that produces the same moment.

$$
\begin{aligned}
d & =(24 \mathrm{in}) \sin 60^{\circ}=20.8 \mathrm{in} . \\
M_{O} & =F d \\
1200 \mathrm{lb} \cdot \mathrm{in} & =F(20.8 \mathrm{in}) \\
F & =\frac{1200 \mathrm{lb} \cdot \mathrm{in} .}{20.8 \mathrm{in}} \\
F & =57.7 \mathrm{lb}
\end{aligned}
$$

d) To determine the point of application of a 240 lb force to produce the same monent,

$$
\begin{aligned}
M_{O} & =F d \\
1200 \mathrm{~b} \cdot \mathrm{in} \cdot & =(240 \mathrm{lb}) \mathrm{d} \\
d & =\frac{1200 \mathrm{lb} \cdot \mathrm{in}}{240 \mathrm{lb}}=5 \mathrm{in} .
\end{aligned}
$$

$$
O B \cos 60=5 \mathrm{in}
$$

$$
O B=10 \mathrm{~mm}
$$

e) Although each of the forces in parts b), c), and d) produces the same moment as the 100 lb force, none are of the same magnitude and sense, or on the same line of action. None of the forces is equivalent to the 100 lb force.

Example:

Given: A 20 lb force is applied to the hammer

Find: The moment of the force at A .
Plan:
Since this is a 2-D problem:

1) Resolve the 20 lb force along the handle's x and y axes.
2) Determine M_{A} using a scalar analysis.

Solution

$$
\begin{aligned}
& +\uparrow F_{y}=20 \sin 30^{\circ} \mathrm{lb} \\
& +\rightarrow F_{x}=20 \cos 30^{\circ} \mathrm{lb}
\end{aligned}
$$

$$
\begin{aligned}
+\left\{\mathbb{M}_{\mathrm{A}}\right. & =\left\{-\left(20 \cos 30^{\circ}\right) \mathrm{lb}(18 \mathrm{in})-\left(20 \sin 20^{\circ}\right) \mathrm{lb}(5 \mathrm{in})\right\} \\
& =-351.77 \mathrm{lb} \cdot \mathrm{in}=352 \mathrm{lb} \cdot \mathrm{in} \text { :clockwise }
\end{aligned}
$$

EX:-

Determine the maximum moment about (B) Which can be caused by the (150N) Force. In what direction should the force act? The distance (AB) is 250 mm .

Solution:-

$$
\begin{aligned}
& M_{B}=150 * 0.25=-37.5 \mathrm{~N} . \mathrm{m} \\
& \theta=180-(90+70)=20^{\circ}
\end{aligned}
$$

Pb:2/5 (Meriam / Kraige):

Calculate the magnitude of the moment about ' O ' of the force 600 N

1) $\mathrm{Mo}=600 \cos 40(4)+600 \sin 40(2)$

$$
=2610 \text { Nm (app.) }
$$

2) $M o=r \times F=(2 i+4 j) \times(600 \cos 40 i-600 \sin 40 j)$

in mm
j ${ }^{\uparrow}$

i

$$
=-771.34-1839=2609.85 \mathrm{Nm}(\mathrm{CW}) ;
$$

$$
\mathrm{mag}=2610 \mathrm{Nm}
$$

EX :

A force of 800 N acts on a bracket as shown. Determine the moment of the force about B.

Solution:

The moment \mathbf{M}_{B} of the force \mathbf{F} about B is obtained by forming the vector product

$$
\mathbf{M}_{B}=\mathbf{r}_{A / B} \times \mathbf{F}
$$

where $\mathbf{r}_{A / B}$ is the vector drawn from B to A. Resolving $\mathbf{r}_{A / B}$ and \mathbf{F} into rectangular components, we have

$$
\begin{aligned}
\mathbf{r}_{A / B} & =-(0.2 \mathrm{~m}) \mathbf{i}+(0.16 \mathrm{~m}) \mathbf{j} \\
\mathbf{F} & =(800 \mathrm{~N}) \cos 60^{\circ} \mathbf{i}+(800 \mathrm{~N}) \sin 60^{\circ} \mathbf{j} \\
& =(400 \mathrm{~N}) \mathbf{i}+(693 \mathrm{~N}) \mathbf{j}
\end{aligned}
$$

Recalling the relations (3.7) for the cross products of unit vectors (Sec. 3.5) we obtain

$$
\left.\begin{array}{rl}
\mathbf{M}_{B} & =\mathbf{r}_{\text {U/B }} \times \mathbf{F}=[-(0.2 \mathrm{~m}) \mathbf{i}+(0.16 \mathrm{~m}) \mathbf{j}] \times[(400 \mathrm{~N}) \mathbf{i}+(693 \mathrm{~N}) \mathbf{j}] \\
& =-(138.6 \mathrm{~N} \cdot \mathbf{m}) \mathbf{k}-(64.0 \mathrm{~N} \cdot \mathbf{m}) \mathbf{k} \\
& =-(202.6 \mathrm{~N} \cdot \mathbf{m}) \mathbf{k}
\end{array} \quad \mathbf{M}_{B}=2013 \mathrm{~N} \cdot \mathrm{~m} \mathrm{i}\right]
$$

The moment \mathbf{M}_{B} is a vector perpendicular to the plane of the figure and pointing into the paper.

HW : Solve problem 3.1-3.15 page 91 in ref. 1

Moment of Couple

Couples:- Moment produced by two equal, opposite and non-collinear forces. It does not produce any translation, only rotation.

=>-F and F produces rotation
$\Rightarrow>M o=F(a+d)-F a=F d ;$ Perpendicular to plane
\Rightarrow Independent of distance from ' 0 ', depends on 'd' only
\Rightarrow moment is same for all moment centers

Vector algebra method

Equivalent couples

- Changing the F and d values does not change a given couple as long as the product (Fd) remains same
-Changing the plane will not alter couple as long as it is parallel

All four are equivalent couples

Force-couple system

=>Effect of force is two fold -1) to push or pull, 2) rotate the body about any axis

\Rightarrow Dual effect can be represented by a force-couple syatem

$\Rightarrow \mathbf{a}$ force can be replaced by a force and couple

Addition of couples

we express the moment M of the resulting couple (in the figure)as follows:

$$
\mathbf{M}=\mathbf{r} \times \mathbf{R}=\mathbf{r} \times\left(\mathbf{F}_{1}+\mathbf{F}_{2}\right)
$$

and, by Varignon's theorem,

$$
\mathbf{M}=\mathbf{r} \times \mathbf{F}_{1}+\mathbf{r} \times \mathbf{F}_{2}
$$

But the first term in the expression obtained represents the moment
M1 of the couple in P1, and the second term represents the moment

M2 of the couple in P2. We have

$$
\mathbf{M}=\mathbf{M}_{1}+\mathbf{M}_{2}
$$

EXAMPLE

$$
M 0=80(9 \sin 60)=624 \quad M m ; C C W
$$

EXAMPLE 4.10

Fig. 4-30

Determine the resultant couple moment of the three couples acting on the plate in Fig. 4-30.

SOLUTION

As shown the perpendicular distances between each pair of couple forces are $d_{1}=4 \mathrm{ft}, d_{2}=3 \mathrm{ft}$, and $d_{3}=5 \mathrm{ft}$. Considering counterclockwise couple moments as positive. we have

$$
\begin{aligned}
\zeta+M_{R}=\Sigma M ; M_{R} & =-F_{1} d_{1}+F_{2} d_{2}-F_{3} d_{3} \\
& =(-200 \mathrm{lb})(4 \mathrm{ft})+(450 \mathrm{lb})(3 \mathrm{ft})-(300 \mathrm{lb})(5 \mathrm{ft}) \\
& =-950 \mathrm{lb} \cdot \mathrm{ft}=950 \mathrm{lb} \cdot \mathrm{ft}) \quad \text { Ans. }
\end{aligned}
$$

The negative sign indicates that \mathbf{M}_{R} has a clockwise rotational sense.

EX:

Replace the couple and force shown by an equivalent single force applied to the lever. Determine the distance from the shaft to the point of application of this equivalent force.

SOLUTION

First the given force and couple are replaced by an equivalent force-couple system at O. We move the force $\mathbf{F}=-(400 \mathrm{~N}) \mathbf{j}$ to O and at the same time add a couple of moment \mathbf{M}_{O} equal to the moment about O of the force in its original position.

$$
\begin{aligned}
\mathbf{M}_{O}=\overrightarrow{O B} \times \mathbf{F} & =[(0.150 \mathrm{~m}) \mathbf{i}+(0.260 \mathrm{~m}) \mathbf{j}] \times(-400 \mathrm{~N}) \mathbf{j} \\
& =-(60 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{k}
\end{aligned}
$$

This couple is added to the couple of moment $-(24 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{k}$ formed by the two $200-\mathrm{N}$ forces, and a couple of moment $-(84 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{k}$ is obtained. This last couple can be eliminated by applying \mathbf{F} at a point C chosen in such a
 way that

$$
\begin{aligned}
-(84 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{k} & =\overrightarrow{O C} \times \mathbf{F} \\
& =\left[(O C) \cos 60^{\circ} \mathbf{i}+(O C) \sin 60^{\circ} \mathbf{j}\right] \times(-400 \mathrm{~N}) \mathbf{j} \\
& =-(O C) \cos 60^{\circ}(400 \mathrm{~N}) \mathbf{k}
\end{aligned}
$$

We conclude that

$$
(O C) \cos 60^{\circ}=0.210 \mathrm{~m}=210 \mathrm{~mm} \quad O C=424 \mathrm{~mm}
$$

We conclude that

$$
\begin{aligned}
& (B C) \cos 60^{\circ}=0.060 \mathrm{~m}=60 \mathrm{~mm} \quad B C=120 \mathrm{~mm} \\
& O C=O B+B C=300 \mathrm{~mm}+120 \mathrm{~mm} \quad O C=424 \mathrm{~mm}
\end{aligned}
$$

How to obtain resultant force ?

NON-CONCURRENT FORCES

Principle of moments
Summarize the above process: $R=\Sigma F$

$$
\mathrm{Mo}=\Sigma \mathrm{M}=\Sigma(\mathrm{Fd})
$$

$\mathrm{Mo}=\mathrm{Rd}$

First two equations: reduce the system of forces to a force-couple system at some point ' O '
Third equation: distance ' d ' from point ' O ' to the line of action ' R ' => VARIGNON'S THEOREM IS EXTENDED HERE FOR NONCONCURENT FORCES

EX:

Meriam / kraige; 2/8

Find the resultant of four forces and one couple which act on the plate

$R x=40+80 \cos 30-60 \cos 45=66.9 \mathrm{~N}$
$R y=50+80 \sin 30+60 \cos 45=132.4 \mathrm{~N}$
$\mathrm{R}=148.3 \mathrm{~N} ; \Theta=\tan ^{-1}(132.4 / 66.9)=63.2 \mathrm{deg}$

$\mathrm{Mo}=140-50(5)+60 \cos 45(4)-60 \sin 45(7)=-237 \mathrm{Nm}$

Final LOA of R: $\quad 148.3 \mathrm{~d}=237 ; \mathrm{d}=1.6 \mathrm{~m}$

LOA of R with x-axis:
$(X i+y j) \times(66.9 i+132.4 j)=-237 k$
$(132.4 x-66.9 y) k=-237 k$
$132.4 x-66.9 y=-237$

$$
Y=0 \Rightarrow x=b=-1.792 m
$$

HW : Solve problem 3.70-3.92 page 118 in ref. 1

HW : Solve problem 3.147-3.148 page 152 in ref. 1

The equilibrium

When the resultant of all the forces acting on a particle is zero the narticle is in equilibrium.

Resolving each force \mathbf{F} into rectangular components, we have

$$
\Sigma\left(F_{x} \mathbf{i}+F_{y} \mathbf{j}\right)=0 \quad \text { or } \quad\left(\Sigma F_{x}\right) \mathbf{i}+\left(\Sigma F_{y}\right) \mathbf{j}=0
$$

We conclude that the necessary and sufficient conditions for the equilibrium of a particle are

$$
\begin{equation*}
\Sigma F_{x}=0 \quad \Sigma F_{y}=0 \tag{2.15}
\end{equation*}
$$

And

$$
\Sigma F_{x}=0 \quad \Sigma F_{y}=0 \quad \Sigma F_{z}=0
$$

See Sample problem 2.9 page 59 Ref. 1
Example:- check the equilibrium conditions For the following system are satisfied?

Solution:-

$$
\begin{aligned}
\Sigma F_{x} & =300 \mathrm{lb}-(200 \mathrm{lb}) \sin 30^{\circ}-(400 \mathrm{lb}) \sin 30^{\circ} \\
& =300 \mathrm{lb}-100 \mathrm{bb}-200 \mathrm{lb}=0 \\
\Sigma F_{y} & =-173.2 \mathrm{lb}-(200 \mathrm{lb}) \cos 30^{\circ}+(400 \mathrm{lb}) \cos 30 \\
& =-173.2 \mathrm{lb}-173.2 \mathrm{lb}+346.4 \mathrm{lb}=0
\end{aligned}
$$

Newton's First Law of Motion

If the resultant force acting on a particle is zero, the particle will remain at rest (if originally at rest) or will move with constant speed in a straight line (if originally in motion).

From this law and from the definition of equilibrium given above, it is seen that a particle in equilibrium either is at rest or is moving in a straight line with constant speed. In the following section, various problems concerning the equilibrium of a particle will be considered.

FREE BODY DIAGRAM

Free body diagram: is a sketch showing the body (particle) and all the forces (and reactions) acting on it.

Ex: $\mathrm{W}=75 \mathrm{~kg}=75 * 9.81=736 \mathrm{~N}$

(a) Space diagram

(b) Free-body diagram

(c) Force triangle

Since point A is in equilibrium, the three forces acting on it must form a closed triangle when drawn in tip-to-tail fashion.

$$
\begin{gathered}
\frac{T_{A B}}{\sin 60^{\circ}}=\frac{T_{A C}}{\sin 40^{\circ}}=\frac{736 \mathrm{~N}}{\sin 80^{\circ}} \\
T_{A B}=647 \mathrm{~N} \quad T_{A C}=480 \mathrm{~N}
\end{gathered}
$$

If an analytic solution is desired, the equations of equilibrium

$$
\Sigma F_{x}=0 \quad \Sigma F_{y}=0
$$

EX:

In a ship-unloading operation, a $3500-\mathrm{lb}$ automobile is supported by a cable A rope is tied to the cable at A and pulled in order to center the automobile over its intended position. The angle between the cable and the vertical is 2°, while the angle between the rope and the horizontal is 30°. What is the tension in the rope?

Solution:

Free-Body Diagram. Point A is chosen as a free body, and the complete free-body diagram is drawn. $T_{A B}$ is the tension in the cable $A B$, and $T_{A C}$ is the tension in the rope.

Equilibrium Condition. Since only three forces act on the free body, we draw a force triangle to express that it is in equilibrium. Using the law of sines, we write

$$
\frac{T_{A B}}{\sin 120^{\circ}}=\frac{T_{A C}}{\sin 2^{\circ}}=\frac{3500 \mathrm{lb}}{\sin 58^{\circ}}
$$

With a calculator, we first compute and store the value of the last quotient. Multiplying this value successively by $\sin 120^{\circ}$ and $\sin 2^{\circ}$, we obtain

$$
T_{A B}=3570 \mathrm{lb} \quad T_{A C}=144 \mathrm{lb}
$$

EX:

Determine the magnitude and direction of the smallest force F which will maintain the package shown in equilibrium. Note that the force exerted by the rollers on the package is perpendicular to the incline.

Solution:

Free-Body Diagram. We choose the package as a free body, assuming that it can be treated as a particle. We draw the corresponding free-body diagram.

Equilibrium Condition. Since only three forces act on the free body, we draw a force triangle to express that it is in equilibrium. Line $1-I^{\prime}$ represents the known direction of \mathbf{P}. In order to obtain the minimum value of the force \mathbf{F}, we choose the direction of \mathbf{F} perpendicular to that of \mathbf{P}. From the geometry of the triangle obtained, we find

$$
\begin{aligned}
F=(294 \mathrm{~N}) \sin 15^{\circ}=76.1 \mathrm{~N} \quad \mathrm{a} & =15^{\circ} \\
\mathrm{F} & =76.1 \mathrm{Nb} 15^{\circ}
\end{aligned}
$$

HW : Solve problem 2.F1-2.70 page 44 in ref. 1

HW : Solve problem 2.127-2.132 page 69 in ref. 1

EQUILIBRIUM IN TWO DIMENSIONS

Reactions at Supports and Connections for a Two-Dimensional Structure

Support or Connection	Reaction	Number of Unknowns
	Force with known line of action	1
	Force with known line of action	1
	Force with known line of action	1
		2
Fixed support	Force and couple	3

Reactions at supports and connections (FBD)

EQUILIBRIUM OF A RIGID BODY IN TWO DIMENSIONS

we can write the equations of equilibrium for a two-dimensional structure in the more general form

$$
\Sigma F_{x}=0 \quad \Sigma F_{y}=0 \quad \Sigma M_{A}=0
$$

(a)

(b)

The free-body umzr urn yл win uns
Mechanical system: body or group of bodies which can be conceptually isolated from all other bodies
System: single body, combination of bodies; rigid or non-rigid; combination of fluids and solids
Free body diagram - FBD:
=> Body to be analyzed is isolated; Forces acting on the body are represented - action of one body on other, gravity attraction, magnetic force etc.
=> After FBD, equilibrium equns. can be formed

CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS			
Force System	Free-Body Diagram	Independent Equations	
1. Colinear			
2. Concurrent			
at a point			
3. ParalleI			

Example of free-body diagram (FBD)

Ex:

Calculate the tension T in the cable (fig. below)
Sol:

$\left[\Sigma M_{O}=0\right]$	$T_{1} r-T_{2} r=0$	$T_{1}=T_{2}$	
$\left[\Sigma F_{y}=0\right]$	$T_{1}+T_{2}-1000=0$	$2 T_{1}=1000$	$T_{1}=T_{2}-500 \mathrm{lb}$

From the example of pulley A we may write the equitibrium of forces on pulley B by inspection as

$$
T_{3}=T_{4}=T_{2} / 2=250 \mathrm{lb}
$$

For pulley C the angle $\theta=30^{\circ}$ in no way affects the moment of T about the center of the pulley, so that moment equilibrium requires

$$
T=T_{3} \quad \text { or } \quad T=250 \mathrm{lb}
$$

Equilibrium of the pulley in the x - and y-directions requires

$$
\begin{array}{lll}
{\left[\Sigma F_{x}=0\right]} & 250 \cos 30^{\circ}-F_{x}=0 & F_{x}=217 \mathrm{lb} \\
{\left[\Sigma F_{y}=0\right]} & F_{y}+250 \sin 30^{\circ}-250=0 & F_{y}=125 \mathrm{lb} \\
{\left[F=\sqrt{F_{x}{ }^{2}+F_{y}{ }^{2}}\right]} & F=\sqrt{(217)^{2}+(125)^{2}}=250 \mathrm{lb}
\end{array}
$$

Example:-

Determine the force (P) shown in fig. knowing that the resultant of the two forces pass through the point (A).

Solution

Ex :-
Find out the reaction on the cylinder (\mathbf{A}) and the total force acting on the pin (\mathbf{O}).

Solution:-

$$
\begin{aligned}
& \mathbf{\Sigma} \mathbf{M}(O)=0 \\
& 2 * 250-\mathrm{R}_{\mathrm{A}}^{*} 400=0 \\
& 400 \mathrm{R}_{\mathrm{A}}=500 \\
& \mathbf{R}_{\mathrm{A}}=1.25 \mathrm{KN} \\
& \mathbf{\Sigma} \mathbf{F} \mathbf{y}=\mathbf{0} \\
& O y-2=0 \\
& O y=2 \mathrm{KN} \\
& \mathbf{\Sigma} \mathbf{F x}=\mathbf{0} \\
& \mathbf{R}_{\mathrm{A}}-\mathrm{Ox}=0 \\
& O \mathbf{x}=\mathbf{R}_{\mathrm{A}}=1.25 \mathrm{KN} \\
& F=\sqrt{(O x)^{2}+(O y)^{2}} \\
& F=\sqrt{(1.25)^{2}+(2)^{2}}=2.35 N
\end{aligned}
$$

F.B.D

Ex (HW):-

Determine the reactions a

Solution:-

For equilibrium

$\sum R_{x}=0, \quad \sum R_{y}=0, \quad \sum M=0$
ANS:
$\mathbf{R}_{\mathrm{b}}=641.7 \mathrm{~N}$
R_{Ax}

$$
\mathrm{R}_{\mathrm{Ay}}
$$

FBD

EX(HW): Determine the magnitude P of the vertical force required to lift the wheelbarrow free of the ground at point B. The combined weight of the wheelbarrow and its load is 240 lb with center of gravity at G.

ANS.: $\mathrm{P}=40 \mathrm{Ib}$

Read Example 4.1-4.5 page 169 in Ref. 1

$$
\text { HW : Solve problem 4.f1- } 4.90 \text { page 173-190 in ref. } 1
$$

Review Problems

HW : Solve problem 4.142- 4.149 page 213 in ref. 1

Tutorial; QUIZ

Analysis of Trusses,

\rightarrow Truss: a structure composed of slender members (wooden struts or metal bars) joined together at their end points.

\rightarrow Assumptions for Design

\rightarrow All loadings are applied at the joints (in case the weight of the member is to be inlcuded, it is generally satisfactory to share it equally between the two ends of the member)
\rightarrow The members are joined together by smooth pins.
Tends to shorten
> \rightarrow Each truss member acts as a two force member. The forces at the end of the member must be directed along the axis of the member.

Tends to

elongate

Two methods to analyze force in simple truss

I

Method of joints

-This method consists of satisfying the conditions of equilibrium for the forces acting on the connecting pin of each joint
-This method deals with equilibrium of concurrent forces and only two independent equilibrium equations are solved

- Newton's third law is followed

Example

Finally sign can be changed if not applied correctly

\rightarrow We consider the equilibrium of a joint of the truss: A member force becomes an external force on the joint's free body diagram. \rightarrow Method of Joints
\rightarrow First draw the F.B.D. of the joint.
\rightarrow The force system acting at each joint is coplanar and concurrent. \rightarrow Moment equilibrium is automatically satisfied.

The free-body diagram can be drawn for each pin and each member

(a)

SAMPLE PROBLEM 6.1

Using the method of joints, determine the force in each member of the truss shown.

Engineering Mechanics- Statics
First Stage 2017-2018

Instructor
Dr. Ammar Ali

SOLUTION

Free-Body: Entire Truss. A free-body diagram of the entire truss is drawn; external forces acting on this free body consist of the applied loads and the reactions at C and E. We write the following equilibrium equations.
$\begin{aligned} &+1 \Sigma M_{C}=0: \quad(2000 \mathrm{lb})(24 \mathrm{ft})+(1000 \mathrm{lb})(12 \mathrm{ft})-E(6 \mathrm{ft})=0 \\ & E=+10,000 \mathrm{lb} \quad \mathbf{E}=10,000 \mathrm{lhx}\end{aligned}$
$\stackrel{\rightharpoonup}{\mathrm{y}} \Sigma F_{\mathrm{s}}=0:$ $\mathbf{C}_{x}=0$
$+x \Sigma F_{y}=0: \quad-2000 \mathrm{lb}-1000 \mathrm{lb}+10,000 \mathrm{lb}+C_{y}=0$

$$
\mathrm{C}_{y}=-7000 \mathrm{lb} \quad \mathbf{C}_{y}=7000 \mathrm{llw}
$$

Free-Body: Joint A. This joint is subjected to only two unknown forces, namely, the forces exerted by members $A B$ and $A D$. A force triangle is used to determine $\mathbf{F}_{A B}$ and $\mathbf{F}_{A D}$. We note that member $A B$ pulls on the joint and thus is in tension and that member $A D$ pushes on the joint and thus is in compression. The magnitudes of the two forces are obtained from the proportion

$$
\frac{2000 \mathrm{lb}}{4}=\frac{F_{A B}}{3}=\frac{F_{A D}}{5}
$$

$$
\begin{aligned}
& F_{A B}=1500 \mathrm{lb} \mathrm{~T} \\
& F_{A, t}=2500 \mathrm{lb} \mathrm{C}
\end{aligned}
$$

Free-Body: Joint D. Since the force exerted by member $A D$ has been determined, only two unknown forces are now involved at this joint. Again, a force triangle is used to determine the unknown forces in members $D B$ and $D E$.

$$
\begin{array}{ll}
F_{D B}=F_{D A} & F_{D A}=2500 \mathrm{lb} T \\
F_{D E}=2\left(\frac{3}{5}\right) F_{D A} & F_{D E}=3000 \mathrm{lbC}
\end{array}
$$

College of Engineering
Petroleum Engineering Dept.

Engineering Mechanics- Statics
First Stage 2017-2018

Instructor
Dr. Ammar Ali

Free-Body: loint B. Since more than three torces act at this joint, we determine the two unknown forces $\mathbf{F}_{B C}$ and $\mathbf{F}_{B E}$ by solving the equilibrium equations $\Sigma F_{x}=0$ and $\Sigma F_{y}=0$. We arbitrarily assume that both unkown forces act away from the joint, i.e., that the members are in tension. The positive value obtained for $F_{s c}$ indicates that our assumption was correct; member BC is in tension. The negative value of $F_{B E}$ indicates that our assumption was wrong member $B E$ is in compression.

$$
\begin{aligned}
& +\times \Sigma F_{y}=0: \quad-1000-\frac{4}{5}(2500)-\frac{4}{5} F_{S E}=0 \\
& F_{B E}=-3750 \mathrm{Ib} \quad F_{\mathrm{BE}}=3400 \mathrm{ld} \mathrm{C} \\
& \begin{array}{c}
\frac{1}{y} \Sigma F_{x}=0: \quad F_{S C}-1500-\frac{3}{5}(2500)-\frac{3}{5}(3750)=0 \\
\left.F_{B C}=+5250 \mathrm{lb} \quad \mu_{B C}=5290\right] \mathrm{l}, 7
\end{array}
\end{aligned}
$$

Free-Body: Joint E. The unknown force $\mathbf{F}_{\text {sc }}$ is assumed to act away from the joint. Summing x components, we write

$$
\begin{aligned}
& \frac{1}{5} \Sigma F_{x}=0: \quad \frac{3}{5} F_{E C}+3000+\frac{3}{5}(3750)=0 \\
& F_{E C}=-8750 \mathrm{lb}
\end{aligned} \quad F_{E C}=5450 \mathrm{~b} C:
$$

Summing y components, we obtain a check of our computations:

$$
\begin{align*}
+x \Sigma F_{y} & =10,000-\frac{4}{5}(3750)-\frac{4}{5}(8750) \\
& =10,000-3000-7000=0 \tag{checks}
\end{align*}
$$

Free-Body: loint C. Using the computed values of $\mathbf{F}_{C: B}$ and $\mathbf{F}_{C E}$, we can determine the reactions \mathbf{C}_{7} and \mathbf{C}_{4} by considering the equilibrium of this joint. Since these reactions have already been determined from the equilibrium of the entire tmass, we will obtain two checks of our computations. We can also simply use the computed values of all forces acting on the joint (torces in members and reactions) and check that the joint is in equilibrium:

$$
\begin{array}{rll}
\dot{y} \Sigma F_{x} & =-5250+\frac{3}{5}(8750)=-5250+5250=0 & \text { (checks) } \\
+\times \Sigma F_{y} & =-7000+\frac{4}{5}(8750)=-7000+7000=0 & \text { (checks) }
\end{array}
$$

I. H. Shames

Determine the force transmitted by each member;
$A, F=1000 \mathrm{~N}$
Pin A

$$
\begin{aligned}
& \Sigma F x=0 \Rightarrow>F_{A C}-0.707 F_{A B}=0 \\
& \Sigma F y=0=>-0.707 F_{A B}+1000=0 \\
& F_{A B}=\mathbf{1 4 1 4} \mathbf{N} ; F_{A C}=\mathbf{1 0 0 0} \mathbf{N}
\end{aligned}
$$

Pin B

Pin C

1000

$$
\begin{aligned}
& \Sigma F x=0 \Rightarrow-1000+F_{C E}+F_{D C} \operatorname{COS} 45=0 \Rightarrow F_{C E}=\mathbf{1 0 0 0} \mathbf{N} \\
& \Sigma F y=0 \Rightarrow-1000+1000+F_{D C} \cos 45=0 \Rightarrow F_{D C}=\mathbf{0}
\end{aligned}
$$

SIMILARLY D, E, F pins are solved

Meriem / Kraige (similar pbm. 6.1 in Beer/Johnston)

Find the force in each member of the loaded cantilever truss by method of joints

FBD of entire truss

$\Sigma \mathrm{ME}=0=>5 \mathrm{~T}-20(5)-30(10)=0 ; \mathbf{T}=\mathbf{8 0} \mathbf{k N}$
$\Sigma \mathrm{Fx}=0=>80 \cos 30-E x=0 ; E x=69.28 \mathbf{k N}$
$\Sigma F y=0=>E y+80 \sin 30-20-30=0=>E y=10 k N$

FBD of joints
$\Sigma F x=0 ; \Sigma F y=0$
Find $A B, A C$ forces

$\Sigma \mathrm{Fy}=0$
Find DE forces
$\Sigma F x=0$ can be checked

HW : Solve problem 6.1- 6.8 page 296 in ref. 1

Center of Mass \& Center of Gravity

Centroids

- Body of mass' m'.
- Body at equilibrium w.r.t. forces in the cord and resultant of gravitational forces at all particles 'W'.
- W is collinear with point A.
- Changing the point of hanging to $\mathrm{B}, \mathrm{C}-$ Same effect.
- All practical purposes, LOA will be concurrent at single point G;
- \quad - center of gravity of the body.

Moment of ' w ' force with Y axis $=w x$

$$
\bar{X}=\left(\int x d w\right) / w
$$

$$
\bar{Y}=\left(\int y d w\right) / w
$$

$$
\bar{Z}=\left(\int z d w\right) / w
$$

$$
W=m g
$$

$$
\overline{\mathrm{Y}}=\left(\int \mathrm{y} \mathrm{dm}\right) / \mathrm{m}
$$

$$
\overline{\mathrm{X}}=\left(\int \mathrm{x} \mathrm{dm}\right) / \mathrm{m}
$$

$\overline{\mathrm{Z}}=\left(\int \mathrm{zdm}\right) / \mathrm{m}$

In vector form, \square

$$
\mathrm{r}=\left(\int \mathrm{rdm}\right) / \mathrm{m}
$$

$$
\begin{aligned}
& \qquad \rho=\mathrm{m} / \mathrm{v} ; \mathrm{dm}=\rho \mathrm{dv} \\
& \begin{array}{|l|}
\hline \overline{\mathrm{X}}=\left(\int \mathbf{x} \rho \mathrm{dv}\right) / \int \rho \mathrm{dv} \\
\overline{\mathrm{Y}}=\left(\int \mathbf{y} \rho \mathrm{dv}\right) / \int \rho \mathrm{dv} \\
\overline{\mathrm{Z}}=\left(\int \mathbf{z} \rho \mathrm{dv}\right) / \int \rho \mathrm{dv} \\
\end{array} \\
& \hline
\end{aligned}
$$

Equns 2, 3, 4 are independent of ' g '; They depend only on mass distribution;
This define a co-ordinate point - center of mass
This is same as center of gravity as long as gravitational field is uniform and parallel

Centroids of lines, areas, volumes
Suppose if density is constant, then the expression define a purely geometrical property of the body; It is called as centroid

Centroid of volume

$$
\bar{X}=\left(\int x_{c} d v\right) / v \quad \bar{Y}=\left(\int y_{c} d v\right) / v \quad \bar{Z}=\left(\int z_{c} d v\right) / v
$$

Centroid of area

$$
\bar{X}=\left(\int x d A\right) / A \quad \bar{Y}=\left(\int y d A\right) / A \quad \bar{Z}=\left(\int z d A\right) / A
$$

Centroid of line

$$
\bar{X}=\left(\int x d L\right) / L \quad \bar{Y}=\left(\int y d L\right) / L \quad \bar{Z}=\left(\int z d L\right) / L
$$

$$
\Sigma_{M_{r}}: \bar{x}_{A}=\Sigma_{X} \Delta A
$$

$$
\Sigma_{M_{A}}: \quad \bar{y}_{A}=\Sigma_{Y} \Delta A
$$

Fig. 5.3 Centroid of an area.

Fig. 5.4 Centroid of a line

Ex:-

Locate the centroid of the triangle shown in figure.

Solution:-

$$
\begin{aligned}
& \frac{b}{x}=\frac{h}{h-y} ; \rightarrow x=\frac{b}{h} *(h-y) \\
& d A=x * d y \quad, \quad \bar{x}=\frac{b}{2}
\end{aligned}
$$

$$
\bar{y}=\frac{\int y^{*} d A}{\int d A}=\frac{\int_{0}^{h} y * x * d y}{\int_{0}^{h} x * d y} ; \Rightarrow \quad \bar{y}=\frac{\int_{0}^{h} y^{*} \frac{b}{h} *(h-y) * d y}{\int_{0}^{h} \frac{b}{h} *(h-y) * d y}
$$

$$
\bar{y}=\frac{\int_{0}^{h}\left(y * b-\frac{y^{2} * b}{h}\right) * d y}{\int_{0}^{h}\left(b-\frac{b^{*} y}{h}\right) * d y} \Rightarrow \bar{y}=\frac{\left[\frac{y^{2} * b}{2}-\frac{y^{3} * b}{3 h}\right]_{0}^{h}}{\left[b^{*} y-\frac{y^{2} * b}{2 h}\right]_{0}^{h}}=\frac{\frac{h^{2} * b}{2}-\frac{h^{2} * b}{3}}{b h-\frac{h^{*} b}{2}}
$$

$$
\Rightarrow \bar{y}=\frac{h}{3}
$$

EX:

Locate centroid of circular arc as shown in fig.
Solution. Choosing the axis of symmetry as the x-axis makes $\bar{y}=0$. A differential element of arc has the length $d L=r d \theta$ expressed in polar coordinates, and the x-coordinate of the element is $r \cos \theta$.

Applying the first of Eqq. $5 / 4$ and substituting $L=2 \alpha r$ give

$$
\left\{L \bar{x}=\int x d L\right] \quad \begin{align*}
(2 \alpha r) \bar{x} & =\int_{-i z}^{a}(r \cos \theta) r d \theta \\
2 \alpha \bar{x} & =2 r^{2} \sin \alpha \\
\bar{x} & =\frac{r \sin \alpha}{\alpha}
\end{align*}
$$

Ex:

Locate the centroid of the area of a circular sector with respect to its vert
Sol I: circular are
$d A=2 r_{0} \alpha d r_{0}$.
$x_{\mathrm{c}}=r_{0} \sin \alpha / \alpha$,
$\left[A \bar{x}=\int x_{c} d A\right] \quad \frac{2 \alpha}{2 \pi}\left(\pi r^{2}\right) \bar{x}=\int_{0}^{r}\left(\frac{r_{0} \sin \alpha}{\alpha}\right)\left(2 r_{0^{\alpha}} d r_{0}\right)$

$$
\begin{aligned}
r^{2} \alpha \bar{x} & =\frac{2}{3} r^{3} \sin \alpha \\
\bar{x} & =\frac{2}{3} \frac{r \sin \alpha}{\alpha}
\end{aligned}
$$

$d A=(r / 2)(r d \theta), \quad$ triangular element
$x_{c}=\frac{2}{3} r \cos \theta$.
$\left\lfloor A \bar{x}=\int x_{c} d A\right]$

$$
\begin{aligned}
\left(r^{2} \alpha\right) \bar{x} & =\int_{-\alpha}^{\alpha}\left(\frac{2}{3} r \cos \theta\right)\left(\frac{1}{2} r^{2} d \theta\right) \\
r^{2} \alpha \bar{x} & =\frac{2}{3} r^{3} \sin \alpha
\end{aligned}
$$

and as before

$$
\bar{x}=\frac{2}{3} \frac{r \sin \alpha}{\alpha}
$$

EX:

Locate the centroid of the area under the curve $\boldsymbol{x}=\boldsymbol{k} \boldsymbol{y}^{3}$ from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{a}$.

Sol I:

$d A=y d x$
$\left.I A \bar{x}=\int x_{c} d A\right] \quad \bar{x} \int_{0}^{a} y d x=\int_{0}^{a} x y d x$
Substituting $y=\{x / k\}^{1 / 3}$ and $k:=a / b^{\delta}$ and integrating give

$$
\frac{3 a b b}{4} \bar{x}=\frac{3 a^{2} b}{7} \quad \vec{x}=\frac{4}{5} a
$$

$y_{c}=y / 2$
$\left[A \bar{y}-\int y_{c} d A \mid\right.$

$$
\frac{3 \mathrm{Kab}}{4} \bar{y}=\int_{0}^{a}\left(\frac{y}{2}\right) y d x
$$

Substituting $y=b(x / a)^{1^{\& 3}}$ and integrating give

$$
\frac{3 a b}{4} \bar{y}=\frac{3 a b^{2}}{10} \quad \bar{y}=\frac{3}{b} b
$$

College of Engineering
Petroleum Engineering Dept.

First Stage 2017-2018

Sol. II:

Solutfon II. The horizontal element of area shown in the lower figure may be employed in place of the vertical element. The x-coordinate to the centroid of the rectangular element is seen to be $x_{c}=x+\frac{1}{2}(a-x)=(a+x) / 2$, which is simply the average of the coordinates a and x of the ends of the strip. Hence,
$\left[A \bar{x}=\int x_{c} d A\right] \quad \bar{x} \int_{0}^{b}(a-x) d y=\int_{0}^{b}\left(\frac{a+x}{2}\right)(a-x) d y$
The value of \bar{y} is found from
$\left[A \bar{y}=\int y_{\mathrm{c}} d A\right] \quad \bar{y} \int_{0}^{b}(a-x) d y=\int_{0}^{b} y(a-x) d y$
where $y_{c}=y$ for the horizontal strip. The evaluation of these integrals will check the previous results for \bar{x} and \bar{y}.

Note:

$\bar{x}_{2:}=x$
$\bar{y}_{s i}=y / 2$
$\mathrm{s}^{\prime} \mathrm{A}=y d x$

$\bar{x}_{2 i}=\frac{a+x}{2}$
$\bar{y}_{e 1}=y$
$d A=(a-x) d y$

$\bar{x}_{e^{\prime}}=\frac{2 r}{3} \cos \theta$
$\bar{y}_{e 1}=\frac{2 r}{3} \sin \theta$
$\Delta A=\frac{1}{2} r^{2} \partial \theta$

Problem for student:

Determine the coordinates of the centroid of the shaded area.

Ans. $\bar{x}=\frac{3}{10} b, \bar{y}=\frac{3}{4} a$

Determine the coordinates of the centroid of the shaded area.

Ans. $\bar{x}=1.443, \bar{y}=0.361 \mathrm{k}$

y

Locate the centroid of the shaded area.
$\vec{x}=2 a / 5, \bar{y}=3 b / 8$

Locate the centroid of the shaded arca between the two curves.

Ans. $\bar{x}=\frac{14}{25}, \bar{y}=\frac{6}{7}$

Determine the x - and y-coordinates of the centroid or the shaded area.

Ans. $\ddot{x}=0.762, \bar{y}=0.533$

The homogeneous slender rod has a uniform cross section and is bent into the shape shown. Calculate the y-coordinate of the mass center of the rod (Reminder: A differential arc length is $d L=$ $\left.\sqrt{(d x)^{2}+(d y)^{2}}=\sqrt{1+(d x / d y)^{2}} d y\right)$

$$
\text { Ans. } \bar{y}=57.4 \mathrm{~mm}
$$

Centroid of Composite Figures

1) Lines:-

$$
\bar{x}=\frac{\sum L_{i}^{*} x_{i}}{\sum L_{i}} \quad, \quad \bar{y}=\frac{\sum L_{i}^{*} y_{i}}{\sum L_{i}}
$$

2) Areas:-

$$
\bar{x}=\frac{\sum A_{i}^{*} x_{i}}{\sum A_{i}} \quad, \quad \bar{y}=\frac{\sum A_{i}^{*} y_{i}}{\sum A_{i}}
$$

Note:
for Lines

$$
X=\left(\int x d L\right) / L \quad Y=\left(\int y d L\right) / L
$$

In which

$$
\begin{aligned}
& (d L)^{2}=(d x)^{2}+(d y)^{2} \\
& \Rightarrow\left(\frac{d L}{d x}\right)^{2}=\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2} \\
& \therefore d L=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} * d x \\
& \text { or } \quad d L=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} * d y
\end{aligned}
$$

First Moments of Areas And Lines

first moment of the area A with respect to the y axis and is denoted by $\boldsymbol{Q}_{\boldsymbol{y}}$. Similarly, the integral (y dA) defines the first moment of A with respect to the x axis and is denoted by \boldsymbol{Q}_{x}.

$$
Q_{y}=\int x d A \quad Q_{x}=\int y d A
$$

That lead to

$$
Q_{y}=\bar{x} A \quad Q_{x}=\bar{y} A
$$

for the composite area:

$$
\begin{aligned}
& Q_{y}=\bar{X}\left(A_{1}+A_{2}+\cdots+A_{n}\right)=\bar{x}_{1} A_{1}+\bar{x}_{2} A_{2}+\cdots+\bar{x}_{n} A_{n} \\
& Q_{x}=\bar{Y}\left(A_{1}+A_{2}+\cdots+A_{n}\right)=\bar{y}_{1} A_{1}+\bar{y}_{2} A_{2}+\cdots+\bar{y}_{n} A_{n}
\end{aligned}
$$

or, for short,

$$
Q_{y}=\bar{X} \Sigma A=\Sigma \bar{x} A \quad Q_{x}=\bar{Y} \Sigma A=\Sigma \bar{y} A
$$

College of Engineering
Petroleum Engineering Dept.

Engineering Mechanics- Statics
First Stage 2017-2018

Instructor
Dr. Ammar Ali

EX:

Locate the centroid of the shaded area.

Solution. The composite area is divided into the four elementary shapes shown in the lower figure. The centroid locations of all these shapes may be obtained from Table D/3. Note that the areas of the "holes" (parts 3 and 4) are taken as negative in the following table:

PART	$\begin{gathered} A \\ \text { in. }^{2} \end{gathered}$	$\begin{gathered} \bar{x} \\ \text { in. } \end{gathered}$	$\begin{aligned} & \bar{y} \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \bar{x} A \\ & \text { in. }{ }^{3} \end{aligned}$	$\begin{aligned} & \bar{y} A \\ & \text { in. }{ }^{3} \end{aligned}$
1	120	6	5	720	600
2	30	14	10/3	420	100
3	-14.14	6	1.273	-84.8	-18
4	-8	12	4	-96	-32
TOTALS	127.9			959	650

The area counterparts to Eqs. 5/7 are now applied and yield

Ans.
$\left[\bar{Y}=\frac{\Sigma A \bar{y}}{\Sigma A}\right] \quad \bar{Y}=\frac{650}{127.9}=5.08 \mathrm{in}$.
Ans.
Ex: For the plane area shown, determine (a) the first moments with respect to the x and y axes, (b) the location of the centroid.

Sol:

Component	$A, \mathrm{~mm}^{2}$	$\bar{x}, \mathrm{~mm}$	$\bar{y}, \mathrm{~mm}$	$\bar{x} A, \mathrm{~mm}^{3}$	$\bar{y} A, \mathrm{~mm}^{3}$
Rectangle	$(120)(80)=9.6 \times 10^{3}$	60	40	$+576 \times 10^{3}$	$+384 \times 10^{3}$
Triangle	$\frac{1}{2}(120)(60\}=3.6 \times 10^{3}$	40	-20	$+144 \times 10^{3}$	-72×10^{3}
Semicircle	$\frac{1}{2} \mathrm{p}(60)^{2}=5.655 \times 10^{3}$	60	105.46	$+339.3 \times 10^{3}$	$+596.4 \times 10^{3}$
Circle	$-\mathrm{p}(40)^{2}=-5.027 \times 10^{3}$	60	80	-301.6×10^{3}	-402.2×10^{3}
	$\Sigma \mathrm{~A}=13.828 \times 10^{3}$			$\Sigma \bar{x} A=+757.7 \times 10^{3}$	$\Sigma \bar{y} A=+506.2 \times 10^{3}$

a. First Moments of the Area. Using Eqs. (5.8), we write

$$
\begin{array}{ll}
Q_{x}=\Sigma \Sigma_{y} A=506.2 \times 10^{3} \mathrm{~mm}^{3} & Q_{x}=5\left(16 \times 1()^{3} \mathrm{~mm}^{3}\right. \\
Q_{y}=\Sigma \bar{x}_{A}=757.7 \times 10^{3} \mathrm{~mm}^{3} & Q_{y y}=7.58 \times 1\left(0^{3} \mathrm{~mm}^{3}\right.
\end{array}
$$

b. Location of Centroid. Substituting the values given in the table into the equations defining the centroid of a composite area, we obtain
$\bar{X} \Sigma A=\Sigma \bar{x} A: \quad \bar{X}\left(13.828 \times 10^{3} \mathrm{~mm}^{2}\right)=757.7 \times 10^{3} \mathrm{~mm}^{3}$
$\bar{Y} \Sigma A=\Sigma \bar{y} A: \quad \bar{Y}\left(13.825 \times 10^{3} \mathrm{~mm}^{2}\right)=506.2 \times 10^{3} \mathrm{~mm}^{3}$
$x=54.8 \mathrm{~mm}$

Point of Symmetry and Axes of Symmetry

Some Time the Position of centroid of a plane figure or curve can be seen by inspection for example if a figure has:-
1- A line of symmetry its centroid is located on that line.

2- Two lines of symmetty the centroid io located at their intersection

3- A point of symmetry which represents in this case the centroid of line of the figure:-

Ex:-

Determined the coordinate of the centroid for the arc below, which lie in the first quadrant.

Solution:-

$x^{2 / 3}+y^{2 / 3}=k$
$y(a)=0$
$\Rightarrow a^{2 / 3}+0=k$
$\therefore k=a^{2 / 3}$
$\therefore x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$

$d l=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} * d x=\sqrt{\left(\frac{d x}{d y}\right)^{2}+1} * d y$
$x_{c}=x \quad, y_{c}=y$

$$
\begin{aligned}
& \frac{2}{3} * x^{-1 / 3}+\frac{2}{3} * y^{-1 / 3} * \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\left(\frac{y}{x}\right)^{1 / 3} \\
& \int x_{c} * d l=\int_{0}^{a} x * \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} * d x \\
& =\frac{3}{5} * a^{2} \\
& \int d l=\int_{0}^{a} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} * d x=\frac{3}{2} a \quad \Rightarrow \bar{x}=\frac{\frac{3}{5} a^{2}}{\frac{3}{2} * a}=\frac{2}{5} * a \\
& ------\quad \text { complete for } \bar{y} \quad \text { (H.W) }
\end{aligned}
$$

Read Example 5.1-5.3 page 229 in Ref. 1
Read Example 5.4 page 240 in Ref. 1

HW 9: Solve problem 5.1- 5.21 page 234 in ref. 1

HW 10: Solve problem 5.345 .46 page 245 in ref. 1

Moments of Inertia (Second Moment of Area)

I -Introduction

Many engineering formulas, such as those relating stresses involve the mathematical expression of the form; $\int_{A} r^{2} d A$ this integral is named (Moment of inertia $\underline{\mathbf{o r}}$ second moment of inertia). II- Rectangular moment of inertia
$I_{x}=\int_{A} y^{2} d A=\iint y^{2} d x d y$
$I_{y}=\int_{A} x^{2} d A=\iint x^{2} d x d y$
$\mathrm{I}_{\mathrm{x}}=$ Moment of inertia with respect to x -axis
$\mathrm{I}_{\mathrm{y}}=$ Moment of inertia with respect to y -axis
These may be calculated by single integration in this regard two possibilities exist.

$d J_{y}=x^{2} d A$

Notes:

- To compute I_{x}, the strip is chosen parallel to the x axis, so that all of the points of the strip are at the same distance y from the x axis (Fig. above b);
- To compute I_{y}, the strip is chosen parallel to the y axis so that all of the points of the strip are at the same distance x from the y axis (Fig. above);

Moment of Inertia of a Rectangular Area.
As an example, let us determine the moment of inertia of a rectangle with respect to its base (Fig. below). Dividing the rectangle into strips parallel to the x axis, we obtain

$$
\begin{align*}
& I_{x}=\int y^{2} d A=\int_{0}^{h} y^{2} b d y=\frac{1}{3} b h^{3} \\
& I_{Y}=\int \mathrm{x}^{2} \mathrm{dA}=\int_{0}^{\mathrm{b}} \mathrm{x}^{2} \mathrm{~h} d \mathrm{dx}=1 / 3 \mathrm{~b}^{3} \mathrm{~h}
\end{align*}
$$

Computing I_{x} and I_{y} Using the Same Elemental Strips.

The formula just derived can be used to determine the moment of inertia dI_{x} with respect to the x axis of a rectangular strip which is parallel to the y axis, such as the strip shown in Fig. above. Setting $\boldsymbol{b}=\boldsymbol{d} \boldsymbol{x}$ and $\boldsymbol{h}=\boldsymbol{v}$ in formula (**), we write

$$
d I_{x}=\frac{1}{3} y^{3} d x
$$

On the other hand, we have

$$
d I_{y}=x^{2} d A=x^{2} y d x
$$

The same element can thus be used to compute the moments or inerıa $\boldsymbol{\iota}_{\boldsymbol{x}}$ and $\boldsymbol{I}_{\boldsymbol{y}}$ of a given area.

Example:-

Determine the moment of inertia of the area under the parabola about the x-axis. Solve by using (a) a horizontal strip of area and (b) a vertical strip of area.

Solution. The constant $k=\frac{4}{9}$ is obtained first by substituting $x=4$ and $y=3$ into the equation for the parabola.
(a) Horizontal strip. Since all parts of the horizontal strip are the same distance from the x-axis, the moment of inertia of the strip about the x-axis is $y^{2} d A$ where $d A=(4-x) d y=4\left(1-y^{2} / 9\right) d y$. Integrating with respect to y gives us
$\left[I_{x}=\int y^{2} d A\right] \quad I_{x}=\int_{0}^{3} 4 y^{2}\left(1-\frac{y^{2}}{9}\right) d y=\frac{72}{5}=14.40(\text { units })^{4}$
Ans.
(b) Vertical strip. Here all parts of the element are at different distances from the x-axis, so we must use the correct expression for the moment of inertia of the elemental rectangle about its base, which, from Sample Problem A/1, is $b h^{3} / 3$. For the width $d x$ and the height y the expression becomes

$$
d I_{x}=\frac{1}{3}(d x) y^{3}
$$

To integrate with respect to x, we must express y in terms of x, which gives $y=3 \sqrt{x} / 2$, and the integral becomes

$$
I_{x}=\frac{1}{3} \int_{0}^{4}\left(\frac{3 \sqrt{x}}{2}\right)^{3} d x=\frac{72}{5}=14.40(\text { units })^{4}
$$

Ans.

Helpful Hint
(1) Thera is litite preforence between Solutions (a) and (b). Solution (b) requires knowing the momentofinertia for a rectangular area about its base.

Note for review:-

$$
\begin{aligned}
& \mathrm{dlx}=1 / 3 \mathrm{dx}\left(\mathrm{y}^{3}\right)=1 / 3 \mathrm{y}^{3} \mathrm{dx} \\
& \mathrm{dly}=\mathrm{x}^{2} \mathrm{dA}=\mathrm{x}^{2} \mathrm{y} d x \text { or } 1 / 3 \mathrm{x}^{3} \mathrm{dy}
\end{aligned}
$$

Computing I_{x} and I_{y} for quarter circle

III Polar moment of inertia

Def. the moment of inertia about an axis perpendicular to the plane of the figure is called (the polar moment of inertia).

$$
J_{o}=\int_{A} r^{2} d A=\iint r^{2} d x d y
$$

But, $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$
$\therefore J_{o}=\int_{A}\left(x^{2}+y^{2}\right) d A=\int_{A} x^{2} d A+\int_{A} y^{2} d A$
$\therefore J_{o}=I_{x}+I_{y}$

In polar coordinates

$$
\begin{aligned}
J_{o} & =\int_{A} r^{2} d A \\
& =\int_{\theta} \int_{r} r^{2}(r d r d \theta)
\end{aligned}
$$

IIII Radius of Gyration

- Consider area A with moment of inertia I_{x} Imagine that the area is concentrated in a thin strip parallel to the x axis with equivalent A_{x}

$$
I_{x}=k_{x}^{2} A \quad k_{x}=\sqrt{\frac{I_{x}}{A}}
$$

$k_{s}=$ radius of gyration with respect to the x ax is

$$
\begin{gathered}
I_{y}=k_{y}^{2} A \quad k_{y}=\sqrt{\frac{I_{y}}{A}} \\
J_{O}=k_{O}^{2} A \quad k_{O}=\sqrt{\frac{J_{O}}{A}} \\
k_{O}^{2}=k_{x}^{2}+k_{y}^{2}
\end{gathered}
$$

Ex:

Determine the moment of inertia about \bar{x} axis
Solution:-
$I_{\bar{x}}=\int y^{2} d A$
$d A=b d y$
$I_{\bar{x}}=\int_{-h / 2}^{h / 2} y^{2} b d y=b\left[\frac{y^{3}}{3}\right]_{-h / 2}^{h / 2}$

$$
\begin{aligned}
I_{\bar{x}} & =\frac{b}{3} *\left[\left(\frac{h}{2}\right)^{3}-\left(-\frac{h}{2}\right)^{3}\right] \\
& =\frac{b}{3} *\left[\frac{h^{3}}{8}+\frac{h^{3}}{8}\right] \\
& =\frac{b}{3} *\left[\frac{2 * h^{3}}{8}\right]=\frac{b^{*} h^{3}}{12}
\end{aligned}
$$

Ex:

Determine the moment of inertia about \bar{x} axis

Solution:-

$$
I_{\bar{y}}=\int x^{2} d A
$$

$d A=h d x$
$I_{\bar{y}}=\int_{-b / 2}^{b / 2} x^{2} h d x=h\left[\frac{x^{3}}{3}\right]_{-b / 2}^{b / 2}$

$$
I_{\bar{y}}=\frac{h}{3} *\left[\left(\frac{b}{2}\right)^{3}-\left(-\frac{b}{2}\right)^{3}\right]
$$

$$
\begin{aligned}
& =\frac{h}{3} *\left[\frac{b^{3}}{8}+\frac{b^{3}}{8}\right] \\
& =\frac{h}{3} *\left[\frac{2 * b^{3}}{8}\right]=\frac{h * b^{3}}{12}
\end{aligned}
$$

Ex:-

Find $\mathrm{I}_{\mathrm{x}}, \mathrm{I}_{\mathrm{y}}$ and J_{o} for the curve $y=k x^{n}$

Solution:-

$y=k x$
$y(a)=b \Rightarrow b=k^{*} a^{n}$
$\therefore k=\frac{b}{a^{n}}$
$\therefore y=\frac{b}{a^{n}} x^{n}$

$I_{x}=\int y^{2} * d A$ $=\int_{0}^{a} y^{2} * y * d x=\int_{0}^{a} y^{3} * d x \quad=\int_{0}^{a}\left(\frac{b}{a^{n}} x^{n}\right) * d x=\frac{1}{3} * \frac{a b^{3}}{3 n+1}$
$I_{y}=\int x^{2} * d A=\int_{0}^{a} x^{2} * y * d x=\int_{0}^{a} x^{2}\left(\frac{b}{a^{n}} x^{n}\right) * d x=\frac{b a^{3}}{n+3}$
$J_{o}=I_{x}+I_{y}=\frac{1}{3} * \frac{a b^{3}}{3 n+1}+\frac{b a^{3}}{n+3}$

Ex:-

Find the moment of inertia and J_{o} of a sector of a circle with radius (a) subtending an angle (α) at the center.
Solution:-
The sector is shown in figure, we take an elementary area at $p(r, \theta)$ of area dr.ed θ

Clearly
$P L=r \sin \theta$
$P N=r \cos \theta$

Then M.I. about Ox is:

$I_{x}=\int_{r=0}^{a} \int_{\theta=0}^{\alpha} d r \cdot r d \theta(P L)^{2}$

$$
\begin{aligned}
I_{x} & =\int_{r=0}^{a} \int_{\theta=0}^{\alpha} d r \cdot r d \theta \cdot r^{2} \sin ^{2} \theta \\
& =\frac{a^{4}}{4} \int_{0}^{\alpha} \frac{1}{2}(1-\cos 2 \theta) d \theta \\
& =\frac{a^{4}}{4}\left[\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]_{0}^{\alpha}=\frac{a^{4}}{4}\left(\frac{\alpha}{2}-\frac{\sin 2 \alpha}{4}\right)
\end{aligned}
$$

Similarly, M.I. about Oy is :-

$$
\begin{aligned}
I_{y} & =\int_{r=0}^{a} \int_{\theta=0}^{\alpha} d r \cdot r d \theta(P N)^{2} \\
I_{y} & =\int_{r=0}^{a} \int_{\theta=0}^{\alpha} d r \cdot r d \theta \cdot r^{2} \cos ^{2} \theta \\
& =\frac{a^{4}}{4} \int_{0}^{\alpha} \frac{1}{2}(1+\cos 2 \theta) d \theta \\
& =\frac{a^{4}}{4}\left[\frac{\theta}{2}+\frac{\sin 2 \theta}{4}\right]_{0}^{\alpha}=\frac{a^{4}}{4}\left(\frac{\alpha}{2}+\frac{\sin 2 \alpha}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
J_{o} & =I_{x}+I_{y} \\
& =\frac{a^{4}}{4}\left(\frac{\alpha}{2}-\frac{\sin 2 \alpha}{4}\right)+\frac{a^{4}}{4}\left(\frac{\alpha}{2}+\frac{\sin 2 \alpha}{4}\right) \\
& =\frac{a^{4}}{4}\left[\frac{\alpha}{2}-\frac{\sin 2 \alpha}{4}+\frac{\alpha}{2}+\frac{\sin 2 \alpha}{4}\right] \\
\Rightarrow & J_{o}=\frac{a^{4} \cdot \alpha}{4}
\end{aligned}
$$

Read Example 9.1-9.3 page 476 in Ref. 1

HW 11: Solve problem 9.1-9.30 page 480 in ref. 1

V- Parallel Axes Theorem (the Transfer Formula)

The moment of inertia of an area with respect to only axis equal to the moment of inertia with respect to a centroid at parallel axis plus the product of the area times the square of the distance between them.

Proof

$$
\begin{aligned}
I_{p \bar{p}} & =\int_{A} y^{2} d A \\
& =\int_{A}(\bar{y}+d)^{2} d A \\
& =\int_{A}\left[\bar{y}^{2}+2 \bar{y} d+d^{2}\right] d A \\
& =\int_{A} \bar{y}^{2} d A+2 d \int_{A} \bar{y} d A+d^{2} \int_{A} d A
\end{aligned}
$$

the term $2 d \int_{A}^{-} \bar{y} d A$ is the moment of area about centroid and by definition of centroid, it is zero. Then,

$$
\begin{aligned}
& I_{p \bar{p}}=I_{Q \bar{Q}}+A d^{2} \\
& \text { or } \\
& {\left[I_{x}=I_{\bar{x}}+A d^{2}\right]}
\end{aligned}
$$

A:- Area
d :- distance between $Q \bar{Q}$ and $P \bar{P}$
Ex:
If $I_{\bar{x}}=\frac{b h^{3}}{12}$ for the rectangle shown find I_{x}

Solution:-

$$
\begin{aligned}
I_{x} & =I_{\bar{x}}+b h\left(\frac{h}{2}\right)^{2} \\
& =\frac{b h^{3}}{12}+b h \frac{h^{2}}{4} \\
& =\frac{b h^{3}}{3}
\end{aligned}
$$

Application 1:

Moment of inertia I_{T} of a circular area with respect to a tangent to the circle T,

$$
\begin{aligned}
I_{T} & =\bar{I}+A d^{2}=\frac{1}{4} \pi r^{4}+\left(\pi r^{2}\right) r^{2} \\
& =\frac{5}{4} \pi r^{4}
\end{aligned}
$$

VI Moment of Inertia for the Composite Area

The moment of inertia of composite area about a particular axis is simply the same of the moment of inertia of its component parts about the some axis, using the transfer formula when necessary.

Note:-

The radius of gyration of composite area is not equal to the sum of the redil of the component area ,but it is given by

$$
r=\sqrt{\frac{I}{A}}
$$

Where

r:- The radius of gyration ; I:- The total moment of inertia; A:- The total area

Rectande	(1)	$\begin{aligned} & \bar{I}_{1^{\prime}}=\frac{1}{12} b h^{3} \\ & \bar{I}_{y^{\prime}}=\frac{1}{12} b h \\ & I_{z}=\frac{1}{3} b h^{3} \\ & I_{y}=\frac{1}{3} b b^{3} h \\ & J_{C}=\frac{1}{18} b h\left(b^{2}+h^{2}\right) \end{aligned}$	Semicircle		$\begin{aligned} & I_{x}=I_{y}=\frac{1}{8} \pi r^{4} \\ & J_{0}=\frac{1}{4} \pi r^{4} \end{aligned}$
Trame		$\begin{aligned} & \bar{I}_{x}=\frac{1}{3 n} b h^{3} \\ & l_{x}=\frac{1}{12} b h^{3} \end{aligned}$	Quarter circle		$\begin{aligned} & I_{x}=I_{y}=\frac{1}{16} \pi r^{4} \\ & J_{0}=\frac{1}{8} \pi r^{4} \end{aligned}$
Circle		$\begin{aligned} & \tilde{i}_{x}=\bar{i}_{y}=\frac{1}{4} \pi r^{4} \\ & f_{0}=\frac{1}{2} \pi r^{4} \end{aligned}$	Ellipse		$\begin{aligned} & \vec{I}_{y}=\frac{1}{4} \pi a b^{3} \\ & \bar{I}_{y}=\frac{1}{4} \pi a^{3} b \\ & J_{O}=\frac{1}{4} \pi a b\left(a^{2}+b^{2}\right) \end{aligned}$

Fig. 9.12 Moments of inertia of common geometric shapes.[ref. 1 pp.483]

EX:

Determine the moment of inertia of the shaded area with respect to the x axis.

Sol:

Moment of Inertia of Rectangle. Referring to Fig. 9.12, we obtain

$$
I_{\mathrm{x}}=\frac{1}{3} b h^{3}=\frac{1}{3}(240 \mathrm{~mm})(120 \mathrm{~mm})^{3}=135.2 \times 10^{6} \mathrm{~mm}^{4}
$$

Moment of Inertic of Half Circle. Referring to Fig. 5.8, we determine the location of the centroid C of the half circle with respect to diameter $A^{\prime} A^{\prime}$.

$$
a=\frac{4 r}{3 \mathrm{p}}=\frac{(4)(90 \mathrm{~mm})}{3 \mathrm{p}}=38.2 \mathrm{~mm}
$$

The distance b from the centroid C to the x axis is

$$
b=120 \mathrm{~mm}-a=1.20 \mathrm{~mm}-38.2 \mathrm{~mm}=81.8 \mathrm{~mm}
$$

Referring now to Fig. 9.12, we compute the moment of inertia of the half circle with respect to diameter $A^{\prime} A^{\prime}$; we also compute the area of the half circle.

$$
\begin{aligned}
I_{\mathrm{A} 1^{\prime}} & =\frac{1}{4} \mathrm{p} r^{4}=\frac{1}{4} \mathrm{p}(90 \mathrm{~mm})^{4}=25.76 \times 10^{6} \mathrm{~mm}^{4} \\
\mathrm{~A} & =\frac{1}{2} \mathrm{p} r^{2}=\frac{1}{2} \mathrm{p}(90 \mathrm{~mm})^{2}=12.72 \times 10^{3} \mathrm{~mm}^{2}
\end{aligned}
$$

Using the parallel-axis theorem, we obtain the value of \bar{I}_{r} :

$$
\begin{aligned}
I_{\Delta t^{\prime}} & =\bar{I}_{s^{\prime}}+A a^{2} \\
25.76 \times 10^{6} \mathrm{~mm}^{4} & =\bar{I}_{s^{\prime}}+\left(12.72 \times 10^{3} \mathrm{~mm}^{2}\right)(38.2 \mathrm{~mm})^{2} \\
\bar{I}_{x^{\prime}} & =7.20 \times 10^{5} \mathrm{~mm}^{4}
\end{aligned}
$$

Again using the parallel-axis theorem, we obtain the value of I_{s} :

$$
\begin{aligned}
I_{\mathrm{r}} & =\bar{I}_{s^{\prime}}+A b^{2}=7.20 \times 10^{6} \mathrm{~mm}^{4}+\left(12.72 \times 10^{3} \mathrm{~mm}^{2}\right)(81.8 \mathrm{~mm})^{2} \\
& =92.3 \times 10^{2} \mathrm{~mm}^{4}
\end{aligned}
$$

Moment of Inertia of Given Area. Subtracting the moment of inertia of the half circle from that of the rectangle, we obtain

$$
\begin{aligned}
& I_{\mathrm{x}}=138.2 \times 10^{6} \mathrm{~mm}^{4}-92.3 \times 10^{6} \mathrm{~mm}^{4} \\
& I_{1}=45.9 \times 1 \mathrm{tr}^{\prime} \text { muta }
\end{aligned}
$$

Ex: Find the moment of inertia for the shaded area about its centroid

Solution:-

$\bar{x}=0$
calculate, \bar{y}
$A_{i, 1}=30, y_{i, 1}=14.5$
$A_{i, 2}=30, y_{i, 2}=8$
$A_{i, 3}=36, y_{i, 3}=1.5$

$\bar{y}=\frac{\sum A_{i} y_{i}}{\sum A_{i}}=\frac{30 * 14.5+30 * 8+36 * 1.5}{30+30+36}$
$\Rightarrow y=7.6 \mathrm{~cm}$
$I_{\bar{x}}=\left(I_{\bar{x}}+A d_{1}^{2}\right)_{1}+\left(I_{\bar{x}}+A d_{2}^{2}\right)_{2}+\left(I_{\bar{x}}+A d_{3}^{2}\right)_{3}$
$=\left(\frac{10 * 3^{3}}{12}+30 * 6.9^{2}\right)+\left(\frac{3 * 10^{3}}{12}+30 * 0.4^{2}\right)+\left(\frac{12 * 3^{3}}{12}+36 * 6.1^{2}\right)$
$\therefore I_{\bar{x}}=3049.66 \mathrm{~cm}^{4}$

$$
\begin{aligned}
I_{\bar{y}} & =\left(I_{\bar{y}}+A d_{1}^{2}\right)_{1}+\left(I_{\bar{y}}+A d_{2}^{2}\right)_{2}+\left(I_{\bar{y}}+A d_{3}^{2}\right)_{3} \\
& =\left(\frac{3 * 10^{3}}{12}\right)+\left(\frac{10 * 3^{3}}{12}\right)+\left(\frac{3 * 12^{3}}{12}\right)
\end{aligned}
$$

$\therefore I_{\bar{y}}=704.5 \mathrm{~cm}^{4}$
HW Find the moment of inertia for the shaded area about its centroid

Read Example 4.1-4.5 page 169 in Ref. 1

HW 12: Solve problem 9.31-9.60 page 492 in ref. 1

Friction

When a body slides on another, the tangential forces generated near contacting surfaces are called Friction Forces.

- Sliding of one contact surface to other - friction occurs and it is opposite to the applied force.
- Reduce friction in bearings, power screws, gears, aircraft propulsion, missiles through the atmosphere, fluid flow etc.
- Maximize friction in brakes, clutches, belt drives etc.

- Occurs when the adjacent layers in a fluid (liquid, gas) are moving at different velocities
- This motion causes friction between fluid elements
- Depends on the relative velocity between layers
- No relative velocity - no fluid friction
- depends on the viscosity of luid measure of resistance to shearng action bevoen the fuid hayers
- Occurs when un-lubricated surfaces are in contact during sliding
- friction force always oppose the sliding motion

EXPERIMENTAL EVIDENCE:

F_{m} proportional to N
$\mathrm{F}_{\mathrm{m}}=\mu_{\mathrm{g}} \mathrm{N} ; \mu_{\mathrm{s}}$ - static friction co-efficient

Similarly, $\mathrm{F}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{N} ; \mu_{\mathrm{k}}-$ kinetic friction co-efficient

μ_{s} and μ_{k} depends on the nature of surface; not on contact area of surface. usually $\boldsymbol{\mu}_{\mathrm{s}}$ more than $\boldsymbol{\mu}_{\mathrm{k}}$.
where:
$\boldsymbol{\mu}_{\mathrm{s}}$ and $\boldsymbol{\mu}_{\mathrm{k}}$: coefficient of static, kinetic friction;
$\boldsymbol{F}_{\mathbf{s},} \boldsymbol{F}_{\boldsymbol{k}}$: Static, kinetic Friction force; \mathbf{N} : Normal force

Four different situation can occur when a rigid body is in contact with

 a horizontal surface.We have horizontal and vertical force equilibrium equns. and $F=\mu N$

- Motion, $\left(P_{x}>F_{m}\right)$
- No friction, ($P_{x}=0$)

- No motion,
- No motion
- Motion impending, ($P_{x}=F_{m}$)

It is sometimes convenient to replace normal force \mathbf{N} and friction force F by their resultant R :

©s - angle of static
friction - maximum angle (like F_{m})
Φ_{k} - angle of kinetic friction; $\Phi_{\mathrm{k}}<\Phi_{\mathrm{s}}$

Consider block of weight W resting on board with variable inclination angle θ

ANGLE OF INCLINATION IS INCREASING

- No friction
- No motion
- Motion impending
- Motion

R - Not vertical

Problems Involving Dry Friction

Most problems involving friction fall into one of the following three groups:-

In the first group of problems,

- all applied forces are given and the coefficients of friction are known; we are to determine whether the body considered will remain at rest or slide.
- The friction force \boldsymbol{F} required to maintain equilibrium is unknown (its magnitude is not equal to $\boldsymbol{m}_{s} \boldsymbol{N}$) and should be determined, together with the normal force N, by drawing a free-body diagram and solving the equations of equilibrium (Fig. below). The value found for the magnitude F of the friction force is then compared with the maximum value $\boldsymbol{F m}=\boldsymbol{m}_{\boldsymbol{s}} \boldsymbol{N}$. If F is smaller than or equal to $\boldsymbol{F}_{\boldsymbol{m}}$,the body remains at rest. If the value found for F is larger than $\boldsymbol{F}_{\boldsymbol{m}}$, equilibrium cannot be maintained and motion takes place; the actual magnitude of the friction force is then $\boldsymbol{F}_{\boldsymbol{k}}=\boldsymbol{m}_{\boldsymbol{k}} \boldsymbol{N}$.

In the second group of problems,

- All applied forces are given and the motion is known to be impending; we are to determine the value of the coefficient of static friction. Here again, we determine the friction force and the normal force by drawing a free-body diagram and solving the equations of equilibrium (Fig. below). Since we know that the value found for \boldsymbol{F} is the maximum value $\boldsymbol{F}_{\boldsymbol{m}}$, the coefficient of friction may be found by writing and solving the equation

$$
F_{m}=m_{s} N .
$$

In the third group of problems,

- The coefficient of static friction is given, and it is known that the motion is impending in a given direction; we are to determine the magnitude or the direction of one of the applied forces. The friction force should be shown in the free body diagram with a sense opposite to that of the impending motion and with a magnitude $\boldsymbol{F}_{\boldsymbol{m}}$ $=\boldsymbol{m}_{s} \boldsymbol{N}$ (Fig. below). The equations of equilibrium can then be written, and the desired force determined.

Note:
When two bodies A and B are in contact (Fig. below), the forces of friction exerted, respectively, by A on B and by B on A are equal and opposite (Newton's third law). In drawing the free body diagram of one
of the bodies, it is important to include the appropriate friction force with its correct sense.

The problem you have to solve may fall in one of the following three categories: (the first step in your solution is to draw a free-body diagram of the body under consideration)

1. All the applied forces and the coefficients of friction are known, and you must determine whether equilibrium is maintained. Note that in this situation the friction force is unknown and cannot be assumed to be equal to $m_{3} N$.
a. Write the equations of equilibrium to determine N and F.
b. Calculate the maximum allowable friction force, $F_{m}=M_{s} N$. If $F \leq F_{m}$, equilibrium is maintained. If $F>F_{m}$, motion occurs, and the magnitude of the friction force is $F_{k}=m_{k} N$ [Sample Prob. 8.1].
2. All the applied forces are known, and you must find the smallest allowable value of M_{s} for which equilibrium is maintained. You will assume that motion is impending and determine the corresponding value of m_{s}.
a. Write the equations of equilibrium to determine N and F.
b. Since motion is impending, $F=F_{m}$. Substitute the values found for N and F into the equation $F_{m=}=\mathrm{m}_{b} N$ and solve for m_{s}.
3. The motion of the body is impending and μ_{s} is known; you must find some unknown quantity, such as a distance, an angle, the magnitude of a force, or the direction of a force.
a. Assume a possible motion of the body and, on the free-body diagram. draw the friction force in a direction opposite to that of the assumed motion.
b. Since motion is impending, $F=F_{m}=\mu_{s} N$. Substituting for m_{s} its known value, you can express F in terms of N on the free-body diagram, thus eliminating one unknown.
c. Write and solve the equilibrium equations for the unknown you seek [Sample Prob. 8.3].

Ex:-

Beer/Johnston

A 100 N force acts as shown on a 300 N block placed on an inclined plane. The coefficients of friction between the block and plane are $\mu_{s}=0.25$ and $\mu_{k}=0.20$. Determine whether the block is in equilibrium and find the value of the friction force.

$$
\begin{aligned}
\sum F_{x}=0: \quad & 100 \mathrm{~N}-\frac{3}{5}(300 \mathrm{~N})-F=0 \\
& F=-80 \mathrm{~N}
\end{aligned}
$$

$\sum F_{y}=0: \quad N-\frac{4}{5}(300 \mathrm{~N})=0$
$N=240 \mathrm{~N}$

$$
F_{m}=\mu_{s} N=0.25(240)=60 \mathrm{~N}
$$

$$
F_{m}<F
$$

The block will slide down the plane.

- If maximum friction force is less than friction force required for equilibrium, block will slide. Calculate kinetic-friction force.

$$
\begin{aligned}
F_{\text {actual }} & =F_{k}=\mu_{k} \mathrm{~N} \\
& =0.20(240 \mathrm{~N})
\end{aligned}
$$

EX:

Meriam/Kraige: $6 / 8$
Cylinder weight: 30 kg , Dia: 400 mm
Static friction co-eff: 0.30 between cylinder and surface
Calculate the applied CW couple M which cause the cylinder to slip

```
\(\Sigma F x=0=-N_{A}+0.3 N_{\mathrm{B}} \cos 30 N_{\mathrm{B}} \sin 30=0\)
\(2 F y=0=-294.3+0.3 N_{A}+N_{B} \operatorname{Cos} 30-0.3 N_{B} \operatorname{Sin} 30=0\)
```

Find $\mathbb{N}_{A} \& \mathbb{N}_{B}$ by solving these two equns.

$$
F_{\mathrm{B}}=0.3 \mathrm{~N}_{\mathrm{B}}
$$

$E M_{C}=0=-0.3 N_{A}(0.2)+0.3 N_{E}(0.2)-M=0$ Put $N_{A} \& N_{B}$: Find ' M '

$$
N A=237 N \& N B=312 N ; M=33 N m
$$

Impending relative motion when two or

three bodies in contact with each other

Meriam/Kraige; 6/5
Wooden block: 1.2 kg ; Paint: 9 kg
Determine the magnitude and direction of (1) the friction force exerted by roof surface on the wooden block, (2) total force exerted by roof surface on the wooden block

$$
\Theta=\tan ^{-1}(4 / 12)=18.43^{\circ}
$$

$$
\text { (2) Total force }=10.2 \times 9.81=100.06 \mathrm{~N} \mathrm{UP} \quad \uparrow
$$

(1) $\Sigma F x=0 \Rightarrow>-F+100.06 \sin 18.43 \Rightarrow F=31.6 \mathrm{~N}$
$\Sigma F y=0 \Rightarrow N=95 N$

Roof surface
10.2x 9.81

EX:

Beer/Johnston

The coefficients of friction are $\mu_{s}=0.40$ and $\mu_{k}=0.30$ berween all surfaces of contact. Determine the force P for which motion of the $30-\mathrm{kg}$ block is impending if cable $A B(a)$ is attached as shown, (b) is removed.

For 20 kg block

N1
$\Sigma F_{y}=0: \quad N_{1}-196.2 \mathrm{~N}=0$
$\mathrm{V}_{\mathbf{t}}=196.2 \mathrm{~N} \dagger$

$F_{1}=\mu_{s} N_{1}=0.4(196.2 \mathrm{~N})$	$F_{1}=78.48 \mathrm{~N} *$

For 30 kg block

$$
\begin{array}{r}
\Sigma F_{y}=0: \quad N_{2}-196.2 \mathrm{~N}-294.3 \mathrm{~N}=0 \\
\mathrm{~N}_{2}=490.5 \mathrm{~N} \dagger
\end{array}
$$

$$
F_{2}=\mu_{s} N_{2}=0.4(490.5 \mathrm{~N})=196.2 \mathrm{~N}
$$

$\Sigma F_{x}=0: \quad-P+78.48 \mathrm{~N}+196.2 \mathrm{~N}=0$

$$
\mathrm{P}=275 \mathrm{~N} \leftarrow
$$

(B)
(b) Without cable $A B$, top and bottom blocks will move together
$\dagger \Sigma F_{y}=0: \quad N-490.5 \mathrm{~N}=0, \quad N=490.5 \mathrm{~N}$
Impending slip: $\quad F=\mu_{s^{2}} N=0.40(490.5 \mathrm{~N})=196.2 \mathrm{~N}$
$\rightarrow \Sigma F_{x}=0: \quad-P+196.2 \mathrm{~N}=0$

EX:

Beer/Johnston

A 0.5 m ladder AB of mass 10 ing leans against a wall as shown. Assuming that the coefficient of static friction on μ_{s} is the same at both surfaces of contact, determine the smallest walue of H_{n} for which equilibrium can be maintained.

Slip impends at both A and $\mathrm{B}, \mathrm{F}_{\mathrm{A}}=\mu_{\mathrm{S}} \mathrm{N}_{\mathrm{A}}, F_{\mathrm{B}}=\mu_{\mathrm{S}} \mathrm{N}_{\mathrm{B}}$

$$
\Sigma F x=0=F_{A}-N_{B}=0, N_{B}=F_{A}=\mu_{s} N_{A}
$$

$$
\Sigma F y=0 \Rightarrow N_{A}-W+F_{E}=0, N_{A}+F_{B}=W
$$

$$
N_{A}+\mu_{\mathrm{S}} \mathrm{~N}_{\mathrm{B}}=\mathrm{W} ; \mathrm{W}=\mathrm{N}_{\mathrm{A}}\left(1+\mu_{\mathrm{S}}^{2}\right)
$$

$$
\begin{aligned}
& \Sigma M_{0}=0 \Rightarrow(6) N_{B}-(2.5)\left(N_{A}\right)+(W)(1.25)=0 \\
& 6 \mu_{S} N_{A}-2.5 N_{A}+N_{A}\left(1+\mu_{S}^{2}\right) 1.25=0 \\
& \mu_{5}=-2.4+2.6=-M_{M} \mu_{s}=0.2
\end{aligned}
$$

Read Example (8.2-8.3) pp. 420 in ref. [1].

HW 13: Solve problems 8. F1- 8.47 page 423 in ref. 1

HW 14: Solve review problems 8. 134-8.139 page 463 in ref. 1

Additional Examples

Example (1):-

A block with 200 N weights rests on a rough horizontal plane, is subjected to the force ($\mathrm{P}=40 \mathrm{~N}$) which inclined (25 o) . Determine the coefficient of friction.

Solution:-

$\sum F_{x}=o$
$F_{f}=40 * \cos 25$
$\sum F_{y}=0$
$N-40 * \sin 25-200=0$

$N=40 * \sin 25+200=217 N$
$F_{f}=\mu^{*} N$
$36.25=\mu * 217$
$\Rightarrow \mu=\frac{36.25}{217}=0.17$

Example (2):-

A wooden block (3000 N) weight, the coefficient of friction between the block and the floor is (0.35), determine whether pushing or pulling process by the force (P) is suitable to make the block tend to move to the right with a least force (P).

Solution:-

First case

In case of pushing

$\sum F_{x}=o$
$p^{*} \cos 30-F_{f}=0$
$F_{f}=0.866 P-------$ - (1)

$\sum F_{y}=o$
$N-P^{*} \sin 30-3000=0$
$N=P \sin 30+3000----$ (2)
$F_{f}=\mu * N---------(3)$
Sub. eq(1) and eq(2) in eq(3)
$0.866 P=0.35(0.5 P+3000)$
$0.691 P=1050$
$P=\frac{1050}{0.691}=1519.4 \mathrm{~N}$

Second case

In case of Pulling

$\sum F_{x}=o$
$P \cos 30=F_{f}$

3000 N
F.B.D
$\Rightarrow N=3000-P \sin 30-------(2)$
$F_{f}=\mu * N-----------$ (3)
Sub. eq(1) and eq(2) in eq(3)
$0.866 P=0.35^{*}(3000-0.5 P)$
$1.041 P=1050$
$P=\frac{1050}{1.041}=1008.6 \mathrm{~N} \quad \Sigma$ the pulling is easier than the pushing

Example (3):-

A 100 Ib force acts as shown on a 300 Ib block placed on an inclined plane. The coefficient of friction between the block and the plane are $\mu_{\mathrm{s}}=0.25$ and $\mu_{\mathrm{k}}=0.20$. Determine whether the block is in equilibrium, and find the value of the friction force.

Solution:-

100 Ib

$\sum F_{x}=0$
$100-\frac{3}{5} * 300-=0$
$\Rightarrow F=-80 \mathrm{Ib}$
$\sum F_{y}=0$
$N-\frac{4}{5} * 300=0$
$\Rightarrow N=+240 I b$

Maximum Friction Force
$F_{\text {Max. }}=F_{s}=\mu_{s} * N$
$\Rightarrow F_{s}=0.25 * 240=60 \mathrm{Ib}$

Actual value of Friction Force

$F_{\text {actual }}=F_{k}=\mu_{k} * N \Rightarrow F_{k}=0.2 * 240=48 \mathrm{Ib}$

Example (4):-

The magnitude of the force (P) is slowly increased .Does the homogeneous box of mass (m) slips or tip first? State the value of (P) which would cause each occurrence. Neglect any effect of the size of the small feet.

Solution:-

Slips
$\sum F_{x}=0$

$N_{B}+N_{C}-m * g+P * \sin 30=0$
$N_{B}=-N_{C}+m * g-P * \sin 30=0$
subst.(2)in(1)
$P^{*} \cos 30=\mu^{*}\left(m g-N_{c}-P^{*} \sin 30\right)+\mu^{*} N_{c}$
$P^{*} \cos 30=\mu^{*} m g-\mu^{*} N_{c}-\mu^{*} P^{*} \sin 30+\mu^{*} N_{c}$
$P^{*} \cos 30=\mu^{*} m g-\mu^{*} P^{*} \sin 30$
$P^{*} \cos 30+\mu^{*} P^{*} \sin 30=\mu^{*} m g$
$\Rightarrow P=\frac{\mu^{*} m g}{\cos 30+\mu^{*} \sin 30} \Rightarrow P=\frac{0.5 * \mathrm{mg}}{0.866+0.5 * 0.5}=0.44 \mathrm{mg}$
Tips
$\sum M_{C}$

$$
\begin{aligned}
& P * \cos 30 * d+P * \sin 30 * 2 * d-m g * d=0 \\
& P=\frac{m g}{\cos 30+2 * \sin 30}=0.53 m g \Rightarrow \because P_{\text {slip }}<P_{\text {tip }} \therefore \quad \text { Slipping will occur }
\end{aligned}
$$

Example (5):-

Blocks A and B of weights (300 kN) and (900 kN) respectively are placed over an inclined plane of inclination θ. Upper block A is tied by a string parallel to plane. If $(\mu=1 / 3)$ is the coefficient of friction for all contact surfaces, then find θ for the downward impending motion of block B.

Solution:-

$N_{1}=W_{1} \cos \theta$
$F_{1}=\mu^{*} N_{1}=\mu^{*} W_{1} \cos \theta$
$T=F_{1}+W_{1} \sin \theta$
$N_{2}=N_{1}+W_{2} \cos \theta$
$F_{2}=\mu^{*} N_{2}=\mu^{*}\left(W_{1} \cos \theta+W_{2} \cos \theta\right)$
$F_{1}+F_{2}=W_{2} \sin \theta$
$\mu^{*} W_{1} \cos \theta+\mu\left(W_{1} \cos \theta+W_{2} \cos \theta\right)=W_{2} \sin \theta$
$\frac{\mu^{*}\left(2 * W_{1}+W_{2}\right)}{W_{2}}=\tan \theta$
$\Rightarrow \tan \theta=\frac{(1 / 3) *(300 * 2+900)}{900}$

\mathbf{W}_{1}

$$
=\frac{5}{9} \Rightarrow \theta=\tan ^{-1}\left(\frac{5}{9}\right)=29.05^{\circ}
$$

Example(6):-

Blocks A and B of weights (750 kN) and (500 kN) respectively are placed on the planes as shown in figure bellow. A force P is applied to pull A up the plane. The connecting string passes over a smooth pulley. If A and B bear the coefficient of friction $(\mu=1 / 5)$, then find P for the impending motion.

Solution:-

$N_{1}=W_{1} \cos \alpha$
$F_{1}=\mu^{*} N_{1}=\mu^{*} W_{1} \cos \alpha$
$T=F_{1}+W_{1} \sin \alpha$
$=\mu * W_{1} \cos \alpha+W_{1} \sin \alpha$
$P^{*} \sin \beta+N_{2}=W_{2}$
$F_{2}=\mu^{*} N_{2}$
$=\mu^{*}\left(W_{2}-P^{*} \sin \beta\right)$
$T+F_{2}=P^{*} \cos \beta$
$\cos \beta * P=\left[\mu * W_{1}{ }^{*} \cos \alpha+W_{1} * \sin \alpha+\mu *\left(W_{2}-P * \sin \beta\right)\right]$
$\Rightarrow P=\frac{W_{1} *\left(\mu^{*} \cos \alpha+\sin \alpha\right)+\mu^{*} W_{2}}{\cos \beta+\mu^{*} \sin \beta}$

Taking

$\mathrm{W}_{1}=750 \mathrm{kN} \quad, \mathrm{W}_{2}=500 \mathrm{kN}$
$\alpha=60^{\circ} \quad, \beta=30^{\circ} \quad, \mu=1 / 5$
$\mathrm{P}=853.52 \mathrm{kN}$

